\(\int \text {csch}^4(c+d x) (a+b \tanh ^3(c+d x))^3 \, dx\) [72]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 138 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=\frac {a^3 \coth (c+d x)}{d}-\frac {a^3 \coth ^3(c+d x)}{3 d}+\frac {3 a^2 b \log (\tanh (c+d x))}{d}-\frac {3 a^2 b \tanh ^2(c+d x)}{2 d}+\frac {a b^2 \tanh ^3(c+d x)}{d}-\frac {3 a b^2 \tanh ^5(c+d x)}{5 d}+\frac {b^3 \tanh ^6(c+d x)}{6 d}-\frac {b^3 \tanh ^8(c+d x)}{8 d} \] Output:

a^3*coth(d*x+c)/d-1/3*a^3*coth(d*x+c)^3/d+3*a^2*b*ln(tanh(d*x+c))/d-3/2*a^ 
2*b*tanh(d*x+c)^2/d+a*b^2*tanh(d*x+c)^3/d-3/5*a*b^2*tanh(d*x+c)^5/d+1/6*b^ 
3*tanh(d*x+c)^6/d-1/8*b^3*tanh(d*x+c)^8/d
 

Mathematica [A] (verified)

Time = 1.45 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.54 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=\frac {2 a^3 \coth (c+d x)}{3 d}-\frac {a^3 \coth (c+d x) \text {csch}^2(c+d x)}{3 d}-\frac {3 a^2 b \log (\cosh (c+d x))}{d}+\frac {3 a^2 b \log (\sinh (c+d x))}{d}+\frac {3 a^2 b \text {sech}^2(c+d x)}{2 d}-\frac {b^3 \text {sech}^4(c+d x)}{4 d}+\frac {b^3 \text {sech}^6(c+d x)}{3 d}-\frac {b^3 \text {sech}^8(c+d x)}{8 d}+\frac {2 a b^2 \tanh (c+d x)}{5 d}+\frac {a b^2 \text {sech}^2(c+d x) \tanh (c+d x)}{5 d}-\frac {3 a b^2 \text {sech}^4(c+d x) \tanh (c+d x)}{5 d} \] Input:

Integrate[Csch[c + d*x]^4*(a + b*Tanh[c + d*x]^3)^3,x]
 

Output:

(2*a^3*Coth[c + d*x])/(3*d) - (a^3*Coth[c + d*x]*Csch[c + d*x]^2)/(3*d) - 
(3*a^2*b*Log[Cosh[c + d*x]])/d + (3*a^2*b*Log[Sinh[c + d*x]])/d + (3*a^2*b 
*Sech[c + d*x]^2)/(2*d) - (b^3*Sech[c + d*x]^4)/(4*d) + (b^3*Sech[c + d*x] 
^6)/(3*d) - (b^3*Sech[c + d*x]^8)/(8*d) + (2*a*b^2*Tanh[c + d*x])/(5*d) + 
(a*b^2*Sech[c + d*x]^2*Tanh[c + d*x])/(5*d) - (3*a*b^2*Sech[c + d*x]^4*Tan 
h[c + d*x])/(5*d)
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.86, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4146, 2333, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+i b \tan (i c+i d x)^3\right )^3}{\sin (i c+i d x)^4}dx\)

\(\Big \downarrow \) 4146

\(\displaystyle \frac {\int \coth ^4(c+d x) \left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^3(c+d x)+a\right )^3d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 2333

\(\displaystyle \frac {\int \left (-b^3 \tanh ^7(c+d x)+b^3 \tanh ^5(c+d x)-3 a b^2 \tanh ^4(c+d x)+3 a b^2 \tanh ^2(c+d x)-3 a^2 b \tanh (c+d x)+a^3 \coth ^4(c+d x)-a^3 \coth ^2(c+d x)+3 a^2 b \coth (c+d x)\right )d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {1}{3} a^3 \coth ^3(c+d x)+a^3 \coth (c+d x)-\frac {3}{2} a^2 b \tanh ^2(c+d x)+3 a^2 b \log (\tanh (c+d x))-\frac {3}{5} a b^2 \tanh ^5(c+d x)+a b^2 \tanh ^3(c+d x)-\frac {1}{8} b^3 \tanh ^8(c+d x)+\frac {1}{6} b^3 \tanh ^6(c+d x)}{d}\)

Input:

Int[Csch[c + d*x]^4*(a + b*Tanh[c + d*x]^3)^3,x]
 

Output:

(a^3*Coth[c + d*x] - (a^3*Coth[c + d*x]^3)/3 + 3*a^2*b*Log[Tanh[c + d*x]] 
- (3*a^2*b*Tanh[c + d*x]^2)/2 + a*b^2*Tanh[c + d*x]^3 - (3*a*b^2*Tanh[c + 
d*x]^5)/5 + (b^3*Tanh[c + d*x]^6)/6 - (b^3*Tanh[c + d*x]^8)/8)/d
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2333
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ 
ExpandIntegrand[(c*x)^m*Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] 
&& PolyQ[Pq, x] && IGtQ[p, -2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4146
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[c*(ff^(m + 1)/f)   Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/ 
2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[m/2]
 
Maple [A] (verified)

Time = 85.43 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.13

method result size
derivativedivides \(\frac {a^{3} \left (\frac {2}{3}-\frac {\operatorname {csch}\left (d x +c \right )^{2}}{3}\right ) \coth \left (d x +c \right )+3 a^{2} b \left (\frac {1}{2 \cosh \left (d x +c \right )^{2}}+\ln \left (\tanh \left (d x +c \right )\right )\right )+3 b^{2} a \left (-\frac {\sinh \left (d x +c \right )}{4 \cosh \left (d x +c \right )^{5}}+\frac {\left (\frac {8}{15}+\frac {\operatorname {sech}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {sech}\left (d x +c \right )^{2}}{15}\right ) \tanh \left (d x +c \right )}{4}\right )+b^{3} \left (-\frac {\sinh \left (d x +c \right )^{4}}{4 \cosh \left (d x +c \right )^{8}}-\frac {\sinh \left (d x +c \right )^{2}}{6 \cosh \left (d x +c \right )^{8}}-\frac {1}{24 \cosh \left (d x +c \right )^{8}}\right )}{d}\) \(156\)
default \(\frac {a^{3} \left (\frac {2}{3}-\frac {\operatorname {csch}\left (d x +c \right )^{2}}{3}\right ) \coth \left (d x +c \right )+3 a^{2} b \left (\frac {1}{2 \cosh \left (d x +c \right )^{2}}+\ln \left (\tanh \left (d x +c \right )\right )\right )+3 b^{2} a \left (-\frac {\sinh \left (d x +c \right )}{4 \cosh \left (d x +c \right )^{5}}+\frac {\left (\frac {8}{15}+\frac {\operatorname {sech}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {sech}\left (d x +c \right )^{2}}{15}\right ) \tanh \left (d x +c \right )}{4}\right )+b^{3} \left (-\frac {\sinh \left (d x +c \right )^{4}}{4 \cosh \left (d x +c \right )^{8}}-\frac {\sinh \left (d x +c \right )^{2}}{6 \cosh \left (d x +c \right )^{8}}-\frac {1}{24 \cosh \left (d x +c \right )^{8}}\right )}{d}\) \(156\)
risch \(-\frac {2 \left (-310 b^{3} {\mathrm e}^{8 d x +8 c}+130 b^{3} {\mathrm e}^{6 d x +6 c}-30 b^{3} {\mathrm e}^{4 d x +4 c}-50 \,{\mathrm e}^{2 d x +2 c} a^{3}-6 b^{2} a -10 a^{3}+270 a^{2} b \,{\mathrm e}^{12 d x +12 c}-270 a^{2} b \,{\mathrm e}^{10 d x +10 c}+180 a \,b^{2} {\mathrm e}^{10 d x +10 c}-360 a^{2} b \,{\mathrm e}^{8 d x +8 c}-108 a \,b^{2} {\mathrm e}^{8 d x +8 c}+135 a^{2} b \,{\mathrm e}^{4 d x +4 c}+48 a \,b^{2} {\mathrm e}^{4 d x +4 c}+45 a^{2} b \,{\mathrm e}^{2 d x +2 c}-30 a \,b^{2} {\mathrm e}^{2 d x +2 c}+280 a^{3} {\mathrm e}^{6 d x +6 c}+490 b^{3} {\mathrm e}^{10 d x +10 c}+980 a^{3} {\mathrm e}^{8 d x +8 c}-490 b^{3} {\mathrm e}^{12 d x +12 c}-45 a^{2} b \,{\mathrm e}^{20 d x +20 c}-135 a^{2} b \,{\mathrm e}^{18 d x +18 c}+30 b^{3} {\mathrm e}^{18 d x +18 c}-130 b^{3} {\mathrm e}^{16 d x +16 c}+760 a^{3} {\mathrm e}^{14 d x +14 c}+360 a^{2} b \,{\mathrm e}^{14 d x +14 c}-240 a \,b^{2} {\mathrm e}^{14 d x +14 c}+96 a \,b^{2} {\mathrm e}^{12 d x +12 c}-30 a \,b^{2} {\mathrm e}^{16 d x +16 c}+30 a^{3} {\mathrm e}^{18 d x +18 c}+310 b^{3} {\mathrm e}^{14 d x +14 c}+1400 a^{3} {\mathrm e}^{12 d x +12 c}+230 a^{3} {\mathrm e}^{16 d x +16 c}+90 a \,b^{2} {\mathrm e}^{18 d x +18 c}-40 \,{\mathrm e}^{4 d x +4 c} a^{3}+1540 \,{\mathrm e}^{10 d x +10 c} a^{3}\right )}{15 d \left ({\mathrm e}^{2 d x +2 c}+1\right )^{8} \left ({\mathrm e}^{2 d x +2 c}-1\right )^{3}}+\frac {3 a^{2} b \ln \left ({\mathrm e}^{2 d x +2 c}-1\right )}{d}-\frac {3 a^{2} b \ln \left ({\mathrm e}^{2 d x +2 c}+1\right )}{d}\) \(565\)

Input:

int(csch(d*x+c)^4*(a+b*tanh(d*x+c)^3)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(a^3*(2/3-1/3*csch(d*x+c)^2)*coth(d*x+c)+3*a^2*b*(1/2/cosh(d*x+c)^2+ln 
(tanh(d*x+c)))+3*b^2*a*(-1/4*sinh(d*x+c)/cosh(d*x+c)^5+1/4*(8/15+1/5*sech( 
d*x+c)^4+4/15*sech(d*x+c)^2)*tanh(d*x+c))+b^3*(-1/4*sinh(d*x+c)^4/cosh(d*x 
+c)^8-1/6*sinh(d*x+c)^2/cosh(d*x+c)^8-1/24/cosh(d*x+c)^8))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9459 vs. \(2 (128) = 256\).

Time = 0.20 (sec) , antiderivative size = 9459, normalized size of antiderivative = 68.54 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=\text {Too large to display} \] Input:

integrate(csch(d*x+c)^4*(a+b*tanh(d*x+c)^3)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=\int \left (a + b \tanh ^{3}{\left (c + d x \right )}\right )^{3} \operatorname {csch}^{4}{\left (c + d x \right )}\, dx \] Input:

integrate(csch(d*x+c)**4*(a+b*tanh(d*x+c)**3)**3,x)
 

Output:

Integral((a + b*tanh(c + d*x)**3)**3*csch(c + d*x)**4, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 997 vs. \(2 (128) = 256\).

Time = 0.15 (sec) , antiderivative size = 997, normalized size of antiderivative = 7.22 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=\text {Too large to display} \] Input:

integrate(csch(d*x+c)^4*(a+b*tanh(d*x+c)^3)^3,x, algorithm="maxima")
 

Output:

3*a^2*b*(log(e^(-d*x - c) + 1)/d + log(e^(-d*x - c) - 1)/d - log(e^(-2*d*x 
 - 2*c) + 1)/d + 2*e^(-2*d*x - 2*c)/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4 
*c) + 1))) + 4/5*a*b^2*(5*e^(-2*d*x - 2*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^( 
-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10 
*c) + 1)) - 5*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c 
) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 
15*e^(-6*d*x - 6*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(- 
6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 1/(d*(5*e^( 
-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 
8*c) + e^(-10*d*x - 10*c) + 1))) + 4/3*a^3*(3*e^(-2*d*x - 2*c)/(d*(3*e^(-2 
*d*x - 2*c) - 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) - 1)) - 1/(d*(3*e^(-2* 
d*x - 2*c) - 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) - 1))) - 4/3*b^3*(3*e^( 
-4*d*x - 4*c)/(d*(8*e^(-2*d*x - 2*c) + 28*e^(-4*d*x - 4*c) + 56*e^(-6*d*x 
- 6*c) + 70*e^(-8*d*x - 8*c) + 56*e^(-10*d*x - 10*c) + 28*e^(-12*d*x - 12* 
c) + 8*e^(-14*d*x - 14*c) + e^(-16*d*x - 16*c) + 1)) - 4*e^(-6*d*x - 6*c)/ 
(d*(8*e^(-2*d*x - 2*c) + 28*e^(-4*d*x - 4*c) + 56*e^(-6*d*x - 6*c) + 70*e^ 
(-8*d*x - 8*c) + 56*e^(-10*d*x - 10*c) + 28*e^(-12*d*x - 12*c) + 8*e^(-14* 
d*x - 14*c) + e^(-16*d*x - 16*c) + 1)) + 10*e^(-8*d*x - 8*c)/(d*(8*e^(-2*d 
*x - 2*c) + 28*e^(-4*d*x - 4*c) + 56*e^(-6*d*x - 6*c) + 70*e^(-8*d*x - 8*c 
) + 56*e^(-10*d*x - 10*c) + 28*e^(-12*d*x - 12*c) + 8*e^(-14*d*x - 14*c...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 437 vs. \(2 (128) = 256\).

Time = 0.36 (sec) , antiderivative size = 437, normalized size of antiderivative = 3.17 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=-\frac {2520 \, a^{2} b \log \left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right ) - 2520 \, a^{2} b \log \left ({\left | e^{\left (2 \, d x + 2 \, c\right )} - 1 \right |}\right ) + \frac {140 \, {\left (33 \, a^{2} b e^{\left (6 \, d x + 6 \, c\right )} - 99 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 24 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 99 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} - 8 \, a^{3} - 33 \, a^{2} b\right )}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}^{3}} - \frac {6849 \, a^{2} b e^{\left (16 \, d x + 16 \, c\right )} + 59832 \, a^{2} b e^{\left (14 \, d x + 14 \, c\right )} + 222012 \, a^{2} b e^{\left (12 \, d x + 12 \, c\right )} - 10080 \, a b^{2} e^{\left (12 \, d x + 12 \, c\right )} - 3360 \, b^{3} e^{\left (12 \, d x + 12 \, c\right )} + 459144 \, a^{2} b e^{\left (10 \, d x + 10 \, c\right )} - 26880 \, a b^{2} e^{\left (10 \, d x + 10 \, c\right )} + 4480 \, b^{3} e^{\left (10 \, d x + 10 \, c\right )} + 580230 \, a^{2} b e^{\left (8 \, d x + 8 \, c\right )} - 23520 \, a b^{2} e^{\left (8 \, d x + 8 \, c\right )} - 11200 \, b^{3} e^{\left (8 \, d x + 8 \, c\right )} + 459144 \, a^{2} b e^{\left (6 \, d x + 6 \, c\right )} - 10752 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 4480 \, b^{3} e^{\left (6 \, d x + 6 \, c\right )} + 222012 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} - 8736 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 3360 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 59832 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} - 5376 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 6849 \, a^{2} b - 672 \, a b^{2}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{8}}}{840 \, d} \] Input:

integrate(csch(d*x+c)^4*(a+b*tanh(d*x+c)^3)^3,x, algorithm="giac")
 

Output:

-1/840*(2520*a^2*b*log(e^(2*d*x + 2*c) + 1) - 2520*a^2*b*log(abs(e^(2*d*x 
+ 2*c) - 1)) + 140*(33*a^2*b*e^(6*d*x + 6*c) - 99*a^2*b*e^(4*d*x + 4*c) + 
24*a^3*e^(2*d*x + 2*c) + 99*a^2*b*e^(2*d*x + 2*c) - 8*a^3 - 33*a^2*b)/(e^( 
2*d*x + 2*c) - 1)^3 - (6849*a^2*b*e^(16*d*x + 16*c) + 59832*a^2*b*e^(14*d* 
x + 14*c) + 222012*a^2*b*e^(12*d*x + 12*c) - 10080*a*b^2*e^(12*d*x + 12*c) 
 - 3360*b^3*e^(12*d*x + 12*c) + 459144*a^2*b*e^(10*d*x + 10*c) - 26880*a*b 
^2*e^(10*d*x + 10*c) + 4480*b^3*e^(10*d*x + 10*c) + 580230*a^2*b*e^(8*d*x 
+ 8*c) - 23520*a*b^2*e^(8*d*x + 8*c) - 11200*b^3*e^(8*d*x + 8*c) + 459144* 
a^2*b*e^(6*d*x + 6*c) - 10752*a*b^2*e^(6*d*x + 6*c) + 4480*b^3*e^(6*d*x + 
6*c) + 222012*a^2*b*e^(4*d*x + 4*c) - 8736*a*b^2*e^(4*d*x + 4*c) - 3360*b^ 
3*e^(4*d*x + 4*c) + 59832*a^2*b*e^(2*d*x + 2*c) - 5376*a*b^2*e^(2*d*x + 2* 
c) + 6849*a^2*b - 672*a*b^2)/(e^(2*d*x + 2*c) + 1)^8)/d
 

Mupad [B] (verification not implemented)

Time = 0.54 (sec) , antiderivative size = 646, normalized size of antiderivative = 4.68 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx=\frac {96\,\left (10\,b^3+a\,b^2\right )}{5\,d\,\left (5\,{\mathrm {e}}^{2\,c+2\,d\,x}+10\,{\mathrm {e}}^{4\,c+4\,d\,x}+10\,{\mathrm {e}}^{6\,c+6\,d\,x}+5\,{\mathrm {e}}^{8\,c+8\,d\,x}+{\mathrm {e}}^{10\,c+10\,d\,x}+1\right )}-\frac {640\,b^3}{3\,d\,\left (6\,{\mathrm {e}}^{2\,c+2\,d\,x}+15\,{\mathrm {e}}^{4\,c+4\,d\,x}+20\,{\mathrm {e}}^{6\,c+6\,d\,x}+15\,{\mathrm {e}}^{8\,c+8\,d\,x}+6\,{\mathrm {e}}^{10\,c+10\,d\,x}+{\mathrm {e}}^{12\,c+12\,d\,x}+1\right )}-\frac {4\,\left (25\,b^3+12\,a\,b^2\right )}{d\,\left (4\,{\mathrm {e}}^{2\,c+2\,d\,x}+6\,{\mathrm {e}}^{4\,c+4\,d\,x}+4\,{\mathrm {e}}^{6\,c+6\,d\,x}+{\mathrm {e}}^{8\,c+8\,d\,x}+1\right )}+\frac {128\,b^3}{d\,\left (7\,{\mathrm {e}}^{2\,c+2\,d\,x}+21\,{\mathrm {e}}^{4\,c+4\,d\,x}+35\,{\mathrm {e}}^{6\,c+6\,d\,x}+35\,{\mathrm {e}}^{8\,c+8\,d\,x}+21\,{\mathrm {e}}^{10\,c+10\,d\,x}+7\,{\mathrm {e}}^{12\,c+12\,d\,x}+{\mathrm {e}}^{14\,c+14\,d\,x}+1\right )}-\frac {2\,\left (3\,a^2\,b+6\,a\,b^2+2\,b^3\right )}{d\,\left (2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1\right )}-\frac {6\,\mathrm {atan}\left (\frac {a^2\,b\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\,\sqrt {-d^2}}{d\,\sqrt {a^4\,b^2}}\right )\,\sqrt {a^4\,b^2}}{\sqrt {-d^2}}-\frac {32\,b^3}{d\,\left (8\,{\mathrm {e}}^{2\,c+2\,d\,x}+28\,{\mathrm {e}}^{4\,c+4\,d\,x}+56\,{\mathrm {e}}^{6\,c+6\,d\,x}+70\,{\mathrm {e}}^{8\,c+8\,d\,x}+56\,{\mathrm {e}}^{10\,c+10\,d\,x}+28\,{\mathrm {e}}^{12\,c+12\,d\,x}+8\,{\mathrm {e}}^{14\,c+14\,d\,x}+{\mathrm {e}}^{16\,c+16\,d\,x}+1\right )}-\frac {4\,a^3}{d\,\left ({\mathrm {e}}^{4\,c+4\,d\,x}-2\,{\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}-\frac {8\,a^3}{3\,d\,\left (3\,{\mathrm {e}}^{2\,c+2\,d\,x}-3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}-1\right )}+\frac {8\,\left (11\,b^3+15\,a\,b^2\right )}{3\,d\,\left (3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1\right )}+\frac {6\,a^2\,b}{d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )} \] Input:

int((a + b*tanh(c + d*x)^3)^3/sinh(c + d*x)^4,x)
 

Output:

(96*(a*b^2 + 10*b^3))/(5*d*(5*exp(2*c + 2*d*x) + 10*exp(4*c + 4*d*x) + 10* 
exp(6*c + 6*d*x) + 5*exp(8*c + 8*d*x) + exp(10*c + 10*d*x) + 1)) - (640*b^ 
3)/(3*d*(6*exp(2*c + 2*d*x) + 15*exp(4*c + 4*d*x) + 20*exp(6*c + 6*d*x) + 
15*exp(8*c + 8*d*x) + 6*exp(10*c + 10*d*x) + exp(12*c + 12*d*x) + 1)) - (4 
*(12*a*b^2 + 25*b^3))/(d*(4*exp(2*c + 2*d*x) + 6*exp(4*c + 4*d*x) + 4*exp( 
6*c + 6*d*x) + exp(8*c + 8*d*x) + 1)) + (128*b^3)/(d*(7*exp(2*c + 2*d*x) + 
 21*exp(4*c + 4*d*x) + 35*exp(6*c + 6*d*x) + 35*exp(8*c + 8*d*x) + 21*exp( 
10*c + 10*d*x) + 7*exp(12*c + 12*d*x) + exp(14*c + 14*d*x) + 1)) - (2*(6*a 
*b^2 + 3*a^2*b + 2*b^3))/(d*(2*exp(2*c + 2*d*x) + exp(4*c + 4*d*x) + 1)) - 
 (6*atan((a^2*b*exp(2*c)*exp(2*d*x)*(-d^2)^(1/2))/(d*(a^4*b^2)^(1/2)))*(a^ 
4*b^2)^(1/2))/(-d^2)^(1/2) - (32*b^3)/(d*(8*exp(2*c + 2*d*x) + 28*exp(4*c 
+ 4*d*x) + 56*exp(6*c + 6*d*x) + 70*exp(8*c + 8*d*x) + 56*exp(10*c + 10*d* 
x) + 28*exp(12*c + 12*d*x) + 8*exp(14*c + 14*d*x) + exp(16*c + 16*d*x) + 1 
)) - (4*a^3)/(d*(exp(4*c + 4*d*x) - 2*exp(2*c + 2*d*x) + 1)) - (8*a^3)/(3* 
d*(3*exp(2*c + 2*d*x) - 3*exp(4*c + 4*d*x) + exp(6*c + 6*d*x) - 1)) + (8*( 
15*a*b^2 + 11*b^3))/(3*d*(3*exp(2*c + 2*d*x) + 3*exp(4*c + 4*d*x) + exp(6* 
c + 6*d*x) + 1)) + (6*a^2*b)/(d*(exp(2*c + 2*d*x) + 1))
 

Reduce [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 1626, normalized size of antiderivative = 11.78 \[ \int \text {csch}^4(c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx =\text {Too large to display} \] Input:

int(csch(d*x+c)^4*(a+b*tanh(d*x+c)^3)^3,x)
 

Output:

( - 45*e**(22*c + 22*d*x)*log(e**(2*c + 2*d*x) + 1)*a**2*b + 45*e**(22*c + 
 22*d*x)*log(e**(c + d*x) - 1)*a**2*b + 45*e**(22*c + 22*d*x)*log(e**(c + 
d*x) + 1)*a**2*b - 18*e**(22*c + 22*d*x)*a**2*b - 225*e**(20*c + 20*d*x)*l 
og(e**(2*c + 2*d*x) + 1)*a**2*b + 225*e**(20*c + 20*d*x)*log(e**(c + d*x) 
- 1)*a**2*b + 225*e**(20*c + 20*d*x)*log(e**(c + d*x) + 1)*a**2*b - 315*e* 
*(18*c + 18*d*x)*log(e**(2*c + 2*d*x) + 1)*a**2*b + 315*e**(18*c + 18*d*x) 
*log(e**(c + d*x) - 1)*a**2*b + 315*e**(18*c + 18*d*x)*log(e**(c + d*x) + 
1)*a**2*b - 60*e**(18*c + 18*d*x)*a**3 + 144*e**(18*c + 18*d*x)*a**2*b - 1 
80*e**(18*c + 18*d*x)*a*b**2 - 60*e**(18*c + 18*d*x)*b**3 + 225*e**(16*c + 
 16*d*x)*log(e**(2*c + 2*d*x) + 1)*a**2*b - 225*e**(16*c + 16*d*x)*log(e** 
(c + d*x) - 1)*a**2*b - 225*e**(16*c + 16*d*x)*log(e**(c + d*x) + 1)*a**2* 
b - 460*e**(16*c + 16*d*x)*a**3 + 90*e**(16*c + 16*d*x)*a**2*b + 60*e**(16 
*c + 16*d*x)*a*b**2 + 260*e**(16*c + 16*d*x)*b**3 + 990*e**(14*c + 14*d*x) 
*log(e**(2*c + 2*d*x) + 1)*a**2*b - 990*e**(14*c + 14*d*x)*log(e**(c + d*x 
) - 1)*a**2*b - 990*e**(14*c + 14*d*x)*log(e**(c + d*x) + 1)*a**2*b - 1520 
*e**(14*c + 14*d*x)*a**3 - 324*e**(14*c + 14*d*x)*a**2*b + 480*e**(14*c + 
14*d*x)*a*b**2 - 620*e**(14*c + 14*d*x)*b**3 + 630*e**(12*c + 12*d*x)*log( 
e**(2*c + 2*d*x) + 1)*a**2*b - 630*e**(12*c + 12*d*x)*log(e**(c + d*x) - 1 
)*a**2*b - 630*e**(12*c + 12*d*x)*log(e**(c + d*x) + 1)*a**2*b - 2800*e**( 
12*c + 12*d*x)*a**3 - 288*e**(12*c + 12*d*x)*a**2*b - 192*e**(12*c + 12...