\(\int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx\) [74]

Optimal result
Mathematica [B] (verified)
Rubi [N/A]
Maple [N/A] (verified)
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [N/A]
Mupad [F(-1)]
Reduce [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=i \text {Int}\left (-\frac {i \sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)},x\right ) \] Output:

I*Defer(Int)(-I*sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(826\) vs. \(2(33)=66\).

Time = 0.66 (sec) , antiderivative size = 826, normalized size of antiderivative = 35.91 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[Sinh[c + d*x]^3/(a + b*Tanh[c + d*x]^3),x]
 

Output:

(-9*a*(a^2 + 3*b^2)*Cosh[c + d*x] + a^3*Cosh[3*(c + d*x)] - a*b^2*Cosh[3*( 
c + d*x)] - 2*a*b*RootSum[a - b + 3*a*#1^2 + 3*b*#1^2 + 3*a*#1^4 - 3*b*#1^ 
4 + a*#1^6 + b*#1^6 & , (3*a^2*c + 3*a*b*c + 3*b^2*c + 3*a^2*d*x + 3*a*b*d 
*x + 3*b^2*d*x + 6*a^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[( 
c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 6*a*b*Log[-Cosh[(c + d*x)/2] - Si 
nh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 6*b^2*Log 
[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + 
 d*x)/2]*#1] + 2*a^2*c*#1^2 - 2*b^2*c*#1^2 + 2*a^2*d*x*#1^2 - 2*b^2*d*x*#1 
^2 + 4*a^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]* 
#1 - Sinh[(c + d*x)/2]*#1]*#1^2 - 4*b^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + 
 d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 + 3*a^2*c*#1^ 
4 - 3*a*b*c*#1^4 + 3*b^2*c*#1^4 + 3*a^2*d*x*#1^4 - 3*a*b*d*x*#1^4 + 3*b^2* 
d*x*#1^4 + 6*a^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d* 
x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 - 6*a*b*Log[-Cosh[(c + d*x)/2] - Sin 
h[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 + 6*b^2 
*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[ 
(c + d*x)/2]*#1]*#1^4)/(a*#1 + b*#1 + 2*a*#1^3 - 2*b*#1^3 + a*#1^5 + b*#1^ 
5) & ] + 27*a^2*b*Sinh[c + d*x] + 9*b^3*Sinh[c + d*x] - a^2*b*Sinh[3*(c + 
d*x)] + b^3*Sinh[3*(c + d*x)])/(12*(a - b)^2*(a + b)^2*d)
 

Rubi [N/A]

Not integrable

Time = 0.23 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \sin (i c+i d x)^3}{a+i b \tan (i c+i d x)^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\sin (i c+i d x)^3}{i b \tan (i c+i d x)^3+a}dx\)

\(\Big \downarrow \) 4151

\(\displaystyle i \int -\frac {i \sinh ^3(c+d x)}{b \tanh ^3(c+d x)+a}dx\)

Input:

Int[Sinh[c + d*x]^3/(a + b*Tanh[c + d*x]^3),x]
 

Output:

$Aborted
 
Maple [N/A] (verified)

Time = 14.73 (sec) , antiderivative size = 289, normalized size of antiderivative = 12.57

method result size
derivativedivides \(\frac {-\frac {16}{3 \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (16 a +16 b \right )}-\frac {8}{\left (16 a +16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-a +2 b}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {a b \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\left (2 a^{2}+b^{2}\right ) \textit {\_R}^{4}-6 a b \,\textit {\_R}^{3}+2 \left (4 a^{2}+5 b^{2}\right ) \textit {\_R}^{2}-6 a b \textit {\_R} +2 a^{2}+b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 \left (a +b \right )^{2} \left (a -b \right )^{2}}-\frac {8}{\left (16 a -16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {16}{3 \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (16 a -16 b \right )}-\frac {a +2 b}{2 \left (a -b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(289\)
default \(\frac {-\frac {16}{3 \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (16 a +16 b \right )}-\frac {8}{\left (16 a +16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-a +2 b}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {a b \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\left (2 a^{2}+b^{2}\right ) \textit {\_R}^{4}-6 a b \,\textit {\_R}^{3}+2 \left (4 a^{2}+5 b^{2}\right ) \textit {\_R}^{2}-6 a b \textit {\_R} +2 a^{2}+b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 \left (a +b \right )^{2} \left (a -b \right )^{2}}-\frac {8}{\left (16 a -16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {16}{3 \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (16 a -16 b \right )}-\frac {a +2 b}{2 \left (a -b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(289\)
risch \(\text {Expression too large to display}\) \(2825\)

Input:

int(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x,method=_RETURNVERBOSE)
 

Output:

1/d*(-16/3/(tanh(1/2*d*x+1/2*c)-1)^3/(16*a+16*b)-8/(16*a+16*b)/(tanh(1/2*d 
*x+1/2*c)-1)^2-1/2/(a+b)^2*(-a+2*b)/(tanh(1/2*d*x+1/2*c)-1)-1/3*a*b/(a+b)^ 
2/(a-b)^2*sum(((2*a^2+b^2)*_R^4-6*a*b*_R^3+2*(4*a^2+5*b^2)*_R^2-6*a*b*_R+2 
*a^2+b^2)/(_R^5*a+2*_R^3*a+4*_R^2*b+_R*a)*ln(tanh(1/2*d*x+1/2*c)-_R),_R=Ro 
otOf(_Z^6*a+3*_Z^4*a+8*_Z^3*b+3*_Z^2*a+a))-8/(16*a-16*b)/(tanh(1/2*d*x+1/2 
*c)+1)^2+16/3/(tanh(1/2*d*x+1/2*c)+1)^3/(16*a-16*b)-1/2*(a+2*b)/(a-b)^2/(t 
anh(1/2*d*x+1/2*c)+1))
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 4.19 (sec) , antiderivative size = 62017, normalized size of antiderivative = 2696.39 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [N/A]

Not integrable

Time = 65.29 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.87 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\int \frac {\sinh ^{3}{\left (c + d x \right )}}{a + b \tanh ^{3}{\left (c + d x \right )}}\, dx \] Input:

integrate(sinh(d*x+c)**3/(a+b*tanh(d*x+c)**3),x)
 

Output:

Integral(sinh(c + d*x)**3/(a + b*tanh(c + d*x)**3), x)
 

Maxima [N/A]

Not integrable

Time = 0.73 (sec) , antiderivative size = 533, normalized size of antiderivative = 23.17 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\int { \frac {\sinh \left (d x + c\right )^{3}}{b \tanh \left (d x + c\right )^{3} + a} \,d x } \] Input:

integrate(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x, algorithm="maxima")
 

Output:

1/24*(a^3 + a^2*b - a*b^2 - b^3 + (a^3*e^(6*c) - a^2*b*e^(6*c) - a*b^2*e^( 
6*c) + b^3*e^(6*c))*e^(6*d*x) - 9*(a^3*e^(4*c) - 3*a^2*b*e^(4*c) + 3*a*b^2 
*e^(4*c) - b^3*e^(4*c))*e^(4*d*x) - 9*(a^3*e^(2*c) + 3*a^2*b*e^(2*c) + 3*a 
*b^2*e^(2*c) + b^3*e^(2*c))*e^(2*d*x))*e^(-3*d*x)/(a^4*d*e^(3*c) - 2*a^2*b 
^2*d*e^(3*c) + b^4*d*e^(3*c)) - 1/8*integrate(16*(3*(a^3*b*e^(5*c) - a^2*b 
^2*e^(5*c) + a*b^3*e^(5*c))*e^(5*d*x) + 2*(a^3*b*e^(3*c) - a*b^3*e^(3*c))* 
e^(3*d*x) + 3*(a^3*b*e^c + a^2*b^2*e^c + a*b^3*e^c)*e^(d*x))/(a^5 - a^4*b 
- 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 + (a^5*e^(6*c) + a^4*b*e^(6*c) - 2*a 
^3*b^2*e^(6*c) - 2*a^2*b^3*e^(6*c) + a*b^4*e^(6*c) + b^5*e^(6*c))*e^(6*d*x 
) + 3*(a^5*e^(4*c) - a^4*b*e^(4*c) - 2*a^3*b^2*e^(4*c) + 2*a^2*b^3*e^(4*c) 
 + a*b^4*e^(4*c) - b^5*e^(4*c))*e^(4*d*x) + 3*(a^5*e^(2*c) + a^4*b*e^(2*c) 
 - 2*a^3*b^2*e^(2*c) - 2*a^2*b^3*e^(2*c) + a*b^4*e^(2*c) + b^5*e^(2*c))*e^ 
(2*d*x)), x)
 

Giac [N/A]

Not integrable

Time = 2.18 (sec) , antiderivative size = 3, normalized size of antiderivative = 0.13 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\int { \frac {\sinh \left (d x + c\right )^{3}}{b \tanh \left (d x + c\right )^{3} + a} \,d x } \] Input:

integrate(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\text {Hanged} \] Input:

int(sinh(c + d*x)^3/(a + b*tanh(c + d*x)^3),x)
 

Output:

\text{Hanged}
 

Reduce [N/A]

Not integrable

Time = 0.34 (sec) , antiderivative size = 7934, normalized size of antiderivative = 344.96 \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx =\text {Too large to display} \] Input:

int(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x)
 

Output:

(e**(6*c + 6*d*x)*a**3 + 3*e**(6*c + 6*d*x)*a**2*b + 3*e**(6*c + 6*d*x)*a* 
b**2 + e**(6*c + 6*d*x)*b**3 - 9*e**(4*c + 4*d*x)*a**3 - 9*e**(4*c + 4*d*x 
)*a**2*b + 9*e**(4*c + 4*d*x)*a*b**2 + 9*e**(4*c + 4*d*x)*b**3 - 720*e**(4 
*c + 3*d*x)*int(e**(d*x)/(e**(6*c + 6*d*x)*a**5 + 5*e**(6*c + 6*d*x)*a**4* 
b + 10*e**(6*c + 6*d*x)*a**3*b**2 + 10*e**(6*c + 6*d*x)*a**2*b**3 + 5*e**( 
6*c + 6*d*x)*a*b**4 + e**(6*c + 6*d*x)*b**5 + 3*e**(4*c + 4*d*x)*a**5 + 9* 
e**(4*c + 4*d*x)*a**4*b + 6*e**(4*c + 4*d*x)*a**3*b**2 - 6*e**(4*c + 4*d*x 
)*a**2*b**3 - 9*e**(4*c + 4*d*x)*a*b**4 - 3*e**(4*c + 4*d*x)*b**5 + 3*e**( 
2*c + 2*d*x)*a**5 + 15*e**(2*c + 2*d*x)*a**4*b + 30*e**(2*c + 2*d*x)*a**3* 
b**2 + 30*e**(2*c + 2*d*x)*a**2*b**3 + 15*e**(2*c + 2*d*x)*a*b**4 + 3*e**( 
2*c + 2*d*x)*b**5 + a**5 + 3*a**4*b + 2*a**3*b**2 - 2*a**2*b**3 - 3*a*b**4 
 - b**5),x)*a**7*b*d - 432*e**(4*c + 3*d*x)*int(e**(d*x)/(e**(6*c + 6*d*x) 
*a**5 + 5*e**(6*c + 6*d*x)*a**4*b + 10*e**(6*c + 6*d*x)*a**3*b**2 + 10*e** 
(6*c + 6*d*x)*a**2*b**3 + 5*e**(6*c + 6*d*x)*a*b**4 + e**(6*c + 6*d*x)*b** 
5 + 3*e**(4*c + 4*d*x)*a**5 + 9*e**(4*c + 4*d*x)*a**4*b + 6*e**(4*c + 4*d* 
x)*a**3*b**2 - 6*e**(4*c + 4*d*x)*a**2*b**3 - 9*e**(4*c + 4*d*x)*a*b**4 - 
3*e**(4*c + 4*d*x)*b**5 + 3*e**(2*c + 2*d*x)*a**5 + 15*e**(2*c + 2*d*x)*a* 
*4*b + 30*e**(2*c + 2*d*x)*a**3*b**2 + 30*e**(2*c + 2*d*x)*a**2*b**3 + 15* 
e**(2*c + 2*d*x)*a*b**4 + 3*e**(2*c + 2*d*x)*b**5 + a**5 + 3*a**4*b + 2*a* 
*3*b**2 - 2*a**2*b**3 - 3*a*b**4 - b**5),x)*a**6*b**2*d + 4752*e**(4*c ...