\(\int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx\) [146]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 76 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=-\frac {b x}{a^2-b^2}+\frac {\left (a^2+b^2\right ) \log (\cosh (x))}{a^3}+\frac {b^4 \log (b \cosh (x)+a \sinh (x))}{a^3 \left (a^2-b^2\right )}+\frac {b \tanh (x)}{a^2}-\frac {\tanh ^2(x)}{2 a} \] Output:

-b*x/(a^2-b^2)+(a^2+b^2)*ln(cosh(x))/a^3+b^4*ln(b*cosh(x)+a*sinh(x))/a^3/( 
a^2-b^2)+b*tanh(x)/a^2-1/2*tanh(x)^2/a
 

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.20 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=-\frac {\log (1-\coth (x))}{2 (a+b)}-\frac {\log (1+\coth (x))}{2 (a-b)}+\frac {b^4 \log (a+b \coth (x))}{a^3 \left (a^2-b^2\right )}-\frac {\left (a^2+b^2\right ) \log (\tanh (x))}{a^3}+\frac {b \tanh (x)}{a^2}-\frac {\tanh ^2(x)}{2 a} \] Input:

Integrate[Tanh[x]^3/(a + b*Coth[x]),x]
 

Output:

-1/2*Log[1 - Coth[x]]/(a + b) - Log[1 + Coth[x]]/(2*(a - b)) + (b^4*Log[a 
+ b*Coth[x]])/(a^3*(a^2 - b^2)) - ((a^2 + b^2)*Log[Tanh[x]])/a^3 + (b*Tanh 
[x])/a^2 - Tanh[x]^2/(2*a)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.28 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.43, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.231, Rules used = {3042, 26, 4052, 27, 3042, 25, 4132, 25, 3042, 26, 4135, 26, 3042, 26, 3956, 4013}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i}{\tan \left (\frac {\pi }{2}+i x\right )^3 \left (a-i b \tan \left (\frac {\pi }{2}+i x\right )\right )}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {1}{\tan \left (i x+\frac {\pi }{2}\right )^3 \left (a-i b \tan \left (i x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle -i \left (-\frac {\int \frac {2 i \left (-b \coth ^2(x)-a \coth (x)+b\right ) \tanh ^2(x)}{a+b \coth (x)}dx}{2 a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle -i \left (-\frac {i \int \frac {\left (-b \coth ^2(x)-a \coth (x)+b\right ) \tanh ^2(x)}{a+b \coth (x)}dx}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -i \left (-\frac {i \int -\frac {b \tan \left (i x+\frac {\pi }{2}\right )^2+i a \tan \left (i x+\frac {\pi }{2}\right )+b}{\tan \left (i x+\frac {\pi }{2}\right )^2 \left (a-i b \tan \left (i x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -i \left (\frac {i \int \frac {b \tan \left (i x+\frac {\pi }{2}\right )^2+i a \tan \left (i x+\frac {\pi }{2}\right )+b}{\tan \left (i x+\frac {\pi }{2}\right )^2 \left (a-i b \tan \left (i x+\frac {\pi }{2}\right )\right )}dx}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}-\frac {\int -\frac {\left (a^2+b^2-b^2 \coth ^2(x)\right ) \tanh (x)}{a+b \coth (x)}dx}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -i \left (\frac {i \left (\frac {\int \frac {\left (a^2+b^2-b^2 \coth ^2(x)\right ) \tanh (x)}{a+b \coth (x)}dx}{a}+\frac {b \tanh (x)}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {\int \frac {i \left (a^2+b^2+b^2 \tan \left (i x+\frac {\pi }{2}\right )^2\right )}{\tan \left (i x+\frac {\pi }{2}\right ) \left (a-i b \tan \left (i x+\frac {\pi }{2}\right )\right )}dx}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \int \frac {a^2+b^2+b^2 \tan \left (i x+\frac {\pi }{2}\right )^2}{\tan \left (i x+\frac {\pi }{2}\right ) \left (a-i b \tan \left (i x+\frac {\pi }{2}\right )\right )}dx}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 4135

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \left (\frac {\left (a^2+b^2\right ) \int -i \tanh (x)dx}{a}+\frac {b^4 \int -\frac {i (b+a \coth (x))}{a+b \coth (x)}dx}{a \left (a^2-b^2\right )}+\frac {i a^2 b x}{a^2-b^2}\right )}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \left (-\frac {i \left (a^2+b^2\right ) \int \tanh (x)dx}{a}-\frac {i b^4 \int \frac {b+a \coth (x)}{a+b \coth (x)}dx}{a \left (a^2-b^2\right )}+\frac {i a^2 b x}{a^2-b^2}\right )}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \left (-\frac {i \left (a^2+b^2\right ) \int -i \tan (i x)dx}{a}-\frac {i b^4 \int \frac {b-i a \tan \left (i x+\frac {\pi }{2}\right )}{a-i b \tan \left (i x+\frac {\pi }{2}\right )}dx}{a \left (a^2-b^2\right )}+\frac {i a^2 b x}{a^2-b^2}\right )}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \left (-\frac {\left (a^2+b^2\right ) \int \tan (i x)dx}{a}-\frac {i b^4 \int \frac {b-i a \tan \left (i x+\frac {\pi }{2}\right )}{a-i b \tan \left (i x+\frac {\pi }{2}\right )}dx}{a \left (a^2-b^2\right )}+\frac {i a^2 b x}{a^2-b^2}\right )}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 3956

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \left (-\frac {i b^4 \int \frac {b-i a \tan \left (i x+\frac {\pi }{2}\right )}{a-i b \tan \left (i x+\frac {\pi }{2}\right )}dx}{a \left (a^2-b^2\right )}+\frac {i a^2 b x}{a^2-b^2}-\frac {i \left (a^2+b^2\right ) \log (\cosh (x))}{a}\right )}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

\(\Big \downarrow \) 4013

\(\displaystyle -i \left (\frac {i \left (\frac {b \tanh (x)}{a}+\frac {i \left (\frac {i a^2 b x}{a^2-b^2}-\frac {i \left (a^2+b^2\right ) \log (\cosh (x))}{a}-\frac {i b^4 \log (a \sinh (x)+b \cosh (x))}{a \left (a^2-b^2\right )}\right )}{a}\right )}{a}-\frac {i \tanh ^2(x)}{2 a}\right )\)

Input:

Int[Tanh[x]^3/(a + b*Coth[x]),x]
 

Output:

(-I)*(((-1/2*I)*Tanh[x]^2)/a + (I*((I*((I*a^2*b*x)/(a^2 - b^2) - (I*(a^2 + 
 b^2)*Log[Cosh[x]])/a - (I*b^4*Log[b*Cosh[x] + a*Sinh[x]])/(a*(a^2 - b^2)) 
))/a + (b*Tanh[x])/a))/a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 

rule 4013
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)* 
(x_)]), x_Symbol] :> Simp[(c/(b*f))*Log[RemoveContent[a*Cos[e + f*x] + b*Si 
n[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4135
Int[((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*tan[(e_.) + (f 
_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(a*( 
A*c - c*C) - b*(A*d - C*d))*(x/((a^2 + b^2)*(c^2 + d^2))), x] + (Simp[(A*b^ 
2 + a^2*C)/((b*c - a*d)*(a^2 + b^2))   Int[(b - a*Tan[e + f*x])/(a + b*Tan[ 
e + f*x]), x], x] - Simp[(c^2*C + A*d^2)/((b*c - a*d)*(c^2 + d^2))   Int[(d 
 - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x], x]) /; FreeQ[{a, b, c, d, e, f 
, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 
Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.03

method result size
parallelrisch \(\frac {2 b^{4} \ln \left (\tanh \left (x \right ) a +b \right )-2 \left (a^{3} \ln \left (1-\tanh \left (x \right )\right )+\left (a +b \right ) \left (\frac {a \left (a -b \right ) \tanh \left (x \right )^{2}}{2}-b \left (a -b \right ) \tanh \left (x \right )+a^{2} x \right )\right ) a}{2 a^{5}-2 a^{3} b^{2}}\) \(78\)
derivativedivides \(\frac {b^{4} \ln \left (a +b \coth \left (x \right )\right )}{a^{3} \left (a +b \right ) \left (a -b \right )}+\frac {b}{a^{2} \coth \left (x \right )}-\frac {\left (-a^{2}-b^{2}\right ) \ln \left (\coth \left (x \right )\right )}{a^{3}}-\frac {1}{2 a \coth \left (x \right )^{2}}-\frac {\ln \left (\coth \left (x \right )-1\right )}{2 a +2 b}-\frac {\ln \left (1+\coth \left (x \right )\right )}{2 a -2 b}\) \(97\)
default \(\frac {b^{4} \ln \left (a +b \coth \left (x \right )\right )}{a^{3} \left (a +b \right ) \left (a -b \right )}+\frac {b}{a^{2} \coth \left (x \right )}-\frac {\left (-a^{2}-b^{2}\right ) \ln \left (\coth \left (x \right )\right )}{a^{3}}-\frac {1}{2 a \coth \left (x \right )^{2}}-\frac {\ln \left (\coth \left (x \right )-1\right )}{2 a +2 b}-\frac {\ln \left (1+\coth \left (x \right )\right )}{2 a -2 b}\) \(97\)
risch \(\frac {x}{a +b}-\frac {2 x}{a}-\frac {2 x \,b^{2}}{a^{3}}-\frac {2 x \,b^{4}}{a^{3} \left (a^{2}-b^{2}\right )}+\frac {2 \,{\mathrm e}^{2 x} a -2 \,{\mathrm e}^{2 x} b -2 b}{\left ({\mathrm e}^{2 x}+1\right )^{2} a^{2}}+\frac {\ln \left ({\mathrm e}^{2 x}+1\right )}{a}+\frac {\ln \left ({\mathrm e}^{2 x}+1\right ) b^{2}}{a^{3}}+\frac {b^{4} \ln \left ({\mathrm e}^{2 x}-\frac {a -b}{a +b}\right )}{a^{3} \left (a^{2}-b^{2}\right )}\) \(135\)

Input:

int(tanh(x)^3/(a+b*coth(x)),x,method=_RETURNVERBOSE)
 

Output:

(2*b^4*ln(tanh(x)*a+b)-2*(a^3*ln(1-tanh(x))+(a+b)*(1/2*a*(a-b)*tanh(x)^2-b 
*(a-b)*tanh(x)+a^2*x))*a)/(2*a^5-2*a^3*b^2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 637 vs. \(2 (74) = 148\).

Time = 0.12 (sec) , antiderivative size = 637, normalized size of antiderivative = 8.38 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx =\text {Too large to display} \] Input:

integrate(tanh(x)^3/(a+b*coth(x)),x, algorithm="fricas")
 

Output:

-((a^4 + a^3*b)*x*cosh(x)^4 + 4*(a^4 + a^3*b)*x*cosh(x)*sinh(x)^3 + (a^4 + 
 a^3*b)*x*sinh(x)^4 + 2*a^3*b - 2*a*b^3 - 2*(a^4 - a^3*b - a^2*b^2 + a*b^3 
 - (a^4 + a^3*b)*x)*cosh(x)^2 - 2*(a^4 - a^3*b - a^2*b^2 + a*b^3 - 3*(a^4 
+ a^3*b)*x*cosh(x)^2 - (a^4 + a^3*b)*x)*sinh(x)^2 + (a^4 + a^3*b)*x - (b^4 
*cosh(x)^4 + 4*b^4*cosh(x)*sinh(x)^3 + b^4*sinh(x)^4 + 2*b^4*cosh(x)^2 + b 
^4 + 2*(3*b^4*cosh(x)^2 + b^4)*sinh(x)^2 + 4*(b^4*cosh(x)^3 + b^4*cosh(x)) 
*sinh(x))*log(2*(b*cosh(x) + a*sinh(x))/(cosh(x) - sinh(x))) - ((a^4 - b^4 
)*cosh(x)^4 + 4*(a^4 - b^4)*cosh(x)*sinh(x)^3 + (a^4 - b^4)*sinh(x)^4 + a^ 
4 - b^4 + 2*(a^4 - b^4)*cosh(x)^2 + 2*(a^4 - b^4 + 3*(a^4 - b^4)*cosh(x)^2 
)*sinh(x)^2 + 4*((a^4 - b^4)*cosh(x)^3 + (a^4 - b^4)*cosh(x))*sinh(x))*log 
(2*cosh(x)/(cosh(x) - sinh(x))) + 4*((a^4 + a^3*b)*x*cosh(x)^3 - (a^4 - a^ 
3*b - a^2*b^2 + a*b^3 - (a^4 + a^3*b)*x)*cosh(x))*sinh(x))/(a^5 - a^3*b^2 
+ (a^5 - a^3*b^2)*cosh(x)^4 + 4*(a^5 - a^3*b^2)*cosh(x)*sinh(x)^3 + (a^5 - 
 a^3*b^2)*sinh(x)^4 + 2*(a^5 - a^3*b^2)*cosh(x)^2 + 2*(a^5 - a^3*b^2 + 3*( 
a^5 - a^3*b^2)*cosh(x)^2)*sinh(x)^2 + 4*((a^5 - a^3*b^2)*cosh(x)^3 + (a^5 
- a^3*b^2)*cosh(x))*sinh(x))
 

Sympy [F]

\[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=\int \frac {\tanh ^{3}{\left (x \right )}}{a + b \coth {\left (x \right )}}\, dx \] Input:

integrate(tanh(x)**3/(a+b*coth(x)),x)
 

Output:

Integral(tanh(x)**3/(a + b*coth(x)), x)
                                                                                    
                                                                                    
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.24 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=\frac {b^{4} \log \left (-{\left (a - b\right )} e^{\left (-2 \, x\right )} + a + b\right )}{a^{5} - a^{3} b^{2}} + \frac {2 \, {\left ({\left (a + b\right )} e^{\left (-2 \, x\right )} + b\right )}}{2 \, a^{2} e^{\left (-2 \, x\right )} + a^{2} e^{\left (-4 \, x\right )} + a^{2}} + \frac {x}{a + b} + \frac {{\left (a^{2} + b^{2}\right )} \log \left (e^{\left (-2 \, x\right )} + 1\right )}{a^{3}} \] Input:

integrate(tanh(x)^3/(a+b*coth(x)),x, algorithm="maxima")
 

Output:

b^4*log(-(a - b)*e^(-2*x) + a + b)/(a^5 - a^3*b^2) + 2*((a + b)*e^(-2*x) + 
 b)/(2*a^2*e^(-2*x) + a^2*e^(-4*x) + a^2) + x/(a + b) + (a^2 + b^2)*log(e^ 
(-2*x) + 1)/a^3
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.28 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=\frac {b^{4} \log \left ({\left | a e^{\left (2 \, x\right )} + b e^{\left (2 \, x\right )} - a + b \right |}\right )}{a^{5} - a^{3} b^{2}} - \frac {x}{a - b} + \frac {{\left (a^{2} + b^{2}\right )} \log \left (e^{\left (2 \, x\right )} + 1\right )}{a^{3}} - \frac {2 \, {\left (a b - {\left (a^{2} - a b\right )} e^{\left (2 \, x\right )}\right )}}{a^{3} {\left (e^{\left (2 \, x\right )} + 1\right )}^{2}} \] Input:

integrate(tanh(x)^3/(a+b*coth(x)),x, algorithm="giac")
 

Output:

b^4*log(abs(a*e^(2*x) + b*e^(2*x) - a + b))/(a^5 - a^3*b^2) - x/(a - b) + 
(a^2 + b^2)*log(e^(2*x) + 1)/a^3 - 2*(a*b - (a^2 - a*b)*e^(2*x))/(a^3*(e^( 
2*x) + 1)^2)
 

Mupad [B] (verification not implemented)

Time = 2.82 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.46 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=\frac {\ln \left ({\mathrm {e}}^{2\,x}+1\right )\,\left (a^2+b^2\right )}{a^3}-\frac {x}{a-b}-\frac {2}{a\,\left (2\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x}+1\right )}+\frac {b^4\,\ln \left (b-a+a\,{\mathrm {e}}^{2\,x}+b\,{\mathrm {e}}^{2\,x}\right )}{a^5-a^3\,b^2}+\frac {2\,\left (a^2-b^2\right )}{a^2\,\left (a+b\right )\,\left ({\mathrm {e}}^{2\,x}+1\right )} \] Input:

int(tanh(x)^3/(a + b*coth(x)),x)
 

Output:

(log(exp(2*x) + 1)*(a^2 + b^2))/a^3 - x/(a - b) - 2/(a*(2*exp(2*x) + exp(4 
*x) + 1)) + (b^4*log(b - a + a*exp(2*x) + b*exp(2*x)))/(a^5 - a^3*b^2) + ( 
2*(a^2 - b^2))/(a^2*(a + b)*(exp(2*x) + 1))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 359, normalized size of antiderivative = 4.72 \[ \int \frac {\tanh ^3(x)}{a+b \coth (x)} \, dx=\frac {e^{4 x} \mathrm {log}\left (e^{2 x}+1\right ) a^{4}-e^{4 x} \mathrm {log}\left (e^{2 x}+1\right ) b^{4}+e^{4 x} \mathrm {log}\left (e^{2 x} a +e^{2 x} b -a +b \right ) b^{4}-e^{4 x} a^{4} x -e^{4 x} a^{4}-e^{4 x} a^{3} b x +e^{4 x} a^{3} b +e^{4 x} a^{2} b^{2}-e^{4 x} a \,b^{3}+2 e^{2 x} \mathrm {log}\left (e^{2 x}+1\right ) a^{4}-2 e^{2 x} \mathrm {log}\left (e^{2 x}+1\right ) b^{4}+2 e^{2 x} \mathrm {log}\left (e^{2 x} a +e^{2 x} b -a +b \right ) b^{4}-2 e^{2 x} a^{4} x -2 e^{2 x} a^{3} b x +\mathrm {log}\left (e^{2 x}+1\right ) a^{4}-\mathrm {log}\left (e^{2 x}+1\right ) b^{4}+\mathrm {log}\left (e^{2 x} a +e^{2 x} b -a +b \right ) b^{4}-a^{4} x -a^{4}-a^{3} b x -a^{3} b +a^{2} b^{2}+a \,b^{3}}{a^{3} \left (e^{4 x} a^{2}-e^{4 x} b^{2}+2 e^{2 x} a^{2}-2 e^{2 x} b^{2}+a^{2}-b^{2}\right )} \] Input:

int(tanh(x)^3/(a+b*coth(x)),x)
 

Output:

(e**(4*x)*log(e**(2*x) + 1)*a**4 - e**(4*x)*log(e**(2*x) + 1)*b**4 + e**(4 
*x)*log(e**(2*x)*a + e**(2*x)*b - a + b)*b**4 - e**(4*x)*a**4*x - e**(4*x) 
*a**4 - e**(4*x)*a**3*b*x + e**(4*x)*a**3*b + e**(4*x)*a**2*b**2 - e**(4*x 
)*a*b**3 + 2*e**(2*x)*log(e**(2*x) + 1)*a**4 - 2*e**(2*x)*log(e**(2*x) + 1 
)*b**4 + 2*e**(2*x)*log(e**(2*x)*a + e**(2*x)*b - a + b)*b**4 - 2*e**(2*x) 
*a**4*x - 2*e**(2*x)*a**3*b*x + log(e**(2*x) + 1)*a**4 - log(e**(2*x) + 1) 
*b**4 + log(e**(2*x)*a + e**(2*x)*b - a + b)*b**4 - a**4*x - a**4 - a**3*b 
*x - a**3*b + a**2*b**2 + a*b**3)/(a**3*(e**(4*x)*a**2 - e**(4*x)*b**2 + 2 
*e**(2*x)*a**2 - 2*e**(2*x)*b**2 + a**2 - b**2))