\(\int \frac {\coth ^3(a+b \log (c x^n))}{x} \, dx\) [196]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-2)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 43 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b n}+\frac {\log \left (\sinh \left (a+b \log \left (c x^n\right )\right )\right )}{b n} \] Output:

-1/2*coth(a+b*ln(c*x^n))^2/b/n+ln(sinh(a+b*ln(c*x^n)))/b/n
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.88 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\text {csch}^2\left (a+b \log \left (c x^n\right )\right )-2 \log \left (\sinh \left (a+b \log \left (c x^n\right )\right )\right )}{2 b n} \] Input:

Integrate[Coth[a + b*Log[c*x^n]]^3/x,x]
 

Output:

-1/2*(Csch[a + b*Log[c*x^n]]^2 - 2*Log[Sinh[a + b*Log[c*x^n]]])/(b*n)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.23, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {3039, 3042, 26, 3954, 26, 3042, 26, 3956}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \coth ^3\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int i \tan \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )^3d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \int \tan \left (\frac {1}{2} (2 i a+\pi )+i b \log \left (c x^n\right )\right )^3d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3954

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-\int i \coth \left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-i \int \coth \left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-i \int -i \tan \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-\int \tan \left (\frac {1}{2} (2 i a+\pi )+i b \log \left (c x^n\right )\right )d\log \left (c x^n\right )\right )}{n}\)

\(\Big \downarrow \) 3956

\(\displaystyle \frac {i \left (\frac {i \coth ^2\left (a+b \log \left (c x^n\right )\right )}{2 b}-\frac {i \log \left (-i \sinh \left (a+b \log \left (c x^n\right )\right )\right )}{b}\right )}{n}\)

Input:

Int[Coth[a + b*Log[c*x^n]]^3/x,x]
 

Output:

(I*(((I/2)*Coth[a + b*Log[c*x^n]]^2)/b - (I*Log[(-I)*Sinh[a + b*Log[c*x^n] 
]])/b))/n
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.30

method result size
derivativedivides \(\frac {-\frac {{\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2}}{n b}\) \(56\)
default \(\frac {-\frac {{\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )-1\right )}{2}-\frac {\ln \left (\coth \left (a +b \ln \left (c \,x^{n}\right )\right )+1\right )}{2}}{n b}\) \(56\)
parallelrisch \(\frac {-2 \ln \left (x \right ) b n +2 \ln \left (\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )\right )-2 \ln \left (1-\tanh \left (a +b \ln \left (c \,x^{n}\right )\right )\right )-{\coth \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{2 b n}\) \(63\)
risch \(\ln \left (x \right )-\frac {2 a}{n b}-\frac {2 \ln \left (c \right )}{n}-\frac {2 \ln \left (x^{n}\right )}{n}-\frac {i \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{n}+\frac {i \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )}{n}+\frac {i \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{n}-\frac {i \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}{n}-\frac {2 \left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}}{b n {\left (\left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}-1\right )}^{2}}+\frac {\ln \left (\left (x^{n}\right )^{2 b} c^{2 b} {\mathrm e}^{2 a} {\mathrm e}^{i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}} {\mathrm e}^{-i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right ) \operatorname {csgn}\left (i c \right )} {\mathrm e}^{-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}} {\mathrm e}^{i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}-1\right )}{b n}\) \(449\)

Input:

int(coth(a+b*ln(c*x^n))^3/x,x,method=_RETURNVERBOSE)
 

Output:

1/n/b*(-1/2*coth(a+b*ln(c*x^n))^2-1/2*ln(coth(a+b*ln(c*x^n))-1)-1/2*ln(cot 
h(a+b*ln(c*x^n))+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 572 vs. \(2 (41) = 82\).

Time = 0.11 (sec) , antiderivative size = 572, normalized size of antiderivative = 13.30 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx =\text {Too large to display} \] Input:

integrate(coth(a+b*log(c*x^n))^3/x,x, algorithm="fricas")
 

Output:

-(b*n*cosh(b*n*log(x) + b*log(c) + a)^4*log(x) + 4*b*n*cosh(b*n*log(x) + b 
*log(c) + a)*log(x)*sinh(b*n*log(x) + b*log(c) + a)^3 + b*n*log(x)*sinh(b* 
n*log(x) + b*log(c) + a)^4 - 2*(b*n*log(x) - 1)*cosh(b*n*log(x) + b*log(c) 
 + a)^2 + b*n*log(x) + 2*(3*b*n*cosh(b*n*log(x) + b*log(c) + a)^2*log(x) - 
 b*n*log(x) + 1)*sinh(b*n*log(x) + b*log(c) + a)^2 - (cosh(b*n*log(x) + b* 
log(c) + a)^4 + 4*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log( 
c) + a)^3 + sinh(b*n*log(x) + b*log(c) + a)^4 + 2*(3*cosh(b*n*log(x) + b*l 
og(c) + a)^2 - 1)*sinh(b*n*log(x) + b*log(c) + a)^2 - 2*cosh(b*n*log(x) + 
b*log(c) + a)^2 + 4*(cosh(b*n*log(x) + b*log(c) + a)^3 - cosh(b*n*log(x) + 
 b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a) + 1)*log(2*sinh(b*n*log(x) 
 + b*log(c) + a)/(cosh(b*n*log(x) + b*log(c) + a) - sinh(b*n*log(x) + b*lo 
g(c) + a))) + 4*(b*n*cosh(b*n*log(x) + b*log(c) + a)^3*log(x) - (b*n*log(x 
) - 1)*cosh(b*n*log(x) + b*log(c) + a))*sinh(b*n*log(x) + b*log(c) + a))/( 
b*n*cosh(b*n*log(x) + b*log(c) + a)^4 + 4*b*n*cosh(b*n*log(x) + b*log(c) + 
 a)*sinh(b*n*log(x) + b*log(c) + a)^3 + b*n*sinh(b*n*log(x) + b*log(c) + a 
)^4 - 2*b*n*cosh(b*n*log(x) + b*log(c) + a)^2 + 2*(3*b*n*cosh(b*n*log(x) + 
 b*log(c) + a)^2 - b*n)*sinh(b*n*log(x) + b*log(c) + a)^2 + b*n + 4*(b*n*c 
osh(b*n*log(x) + b*log(c) + a)^3 - b*n*cosh(b*n*log(x) + b*log(c) + a))*si 
nh(b*n*log(x) + b*log(c) + a))
 

Sympy [F(-2)]

Exception generated. \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(coth(a+b*ln(c*x**n))**3/x,x)
 

Output:

Exception raised: TypeError >> Invalid NaN comparison
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 330 vs. \(2 (41) = 82\).

Time = 0.11 (sec) , antiderivative size = 330, normalized size of antiderivative = 7.67 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {4 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} - 3}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} - \frac {3 \, {\left (2 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} - 1\right )}}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {2 \, c^{2 \, b} e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} - 3}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} - \frac {3}{4 \, {\left (b c^{4 \, b} n e^{\left (4 \, b \log \left (x^{n}\right ) + 4 \, a\right )} - 2 \, b c^{2 \, b} n e^{\left (2 \, b \log \left (x^{n}\right ) + 2 \, a\right )} + b n\right )}} + \frac {\log \left (\frac {{\left (c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )} + 1\right )} e^{\left (-a\right )}}{c^{b}}\right )}{b n} + \frac {\log \left (\frac {{\left (c^{b} e^{\left (b \log \left (x^{n}\right ) + a\right )} - 1\right )} e^{\left (-a\right )}}{c^{b}}\right )}{b n} - \log \left (x\right ) \] Input:

integrate(coth(a+b*log(c*x^n))^3/x,x, algorithm="maxima")
 

Output:

-1/4*(4*c^(2*b)*e^(2*b*log(x^n) + 2*a) - 3)/(b*c^(4*b)*n*e^(4*b*log(x^n) + 
 4*a) - 2*b*c^(2*b)*n*e^(2*b*log(x^n) + 2*a) + b*n) - 3/4*(2*c^(2*b)*e^(2* 
b*log(x^n) + 2*a) - 1)/(b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 2*b*c^(2*b)*n 
*e^(2*b*log(x^n) + 2*a) + b*n) + 1/4*(2*c^(2*b)*e^(2*b*log(x^n) + 2*a) - 3 
)/(b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 2*b*c^(2*b)*n*e^(2*b*log(x^n) + 2* 
a) + b*n) - 3/4/(b*c^(4*b)*n*e^(4*b*log(x^n) + 4*a) - 2*b*c^(2*b)*n*e^(2*b 
*log(x^n) + 2*a) + b*n) + log((c^b*e^(b*log(x^n) + a) + 1)*e^(-a)/c^b)/(b* 
n) + log((c^b*e^(b*log(x^n) + a) - 1)*e^(-a)/c^b)/(b*n) - log(x)
                                                                                    
                                                                                    
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 137 vs. \(2 (41) = 82\).

Time = 0.18 (sec) , antiderivative size = 137, normalized size of antiderivative = 3.19 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\log \left (x^{b n}\right )}{b n} + \frac {\log \left (\sqrt {-2 \, x^{2 \, b n} {\left | c \right |}^{2 \, b} \cos \left (\pi b \mathrm {sgn}\left (c\right ) - \pi b\right ) e^{\left (2 \, a\right )} + x^{4 \, b n} {\left | c \right |}^{4 \, b} e^{\left (4 \, a\right )} + 1}\right )}{b n} - \frac {3 \, c^{4 \, b} x^{4 \, b n} e^{\left (4 \, a\right )} - 2 \, c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} + 3}{2 \, {\left (c^{2 \, b} x^{2 \, b n} e^{\left (2 \, a\right )} - 1\right )}^{2} b n} \] Input:

integrate(coth(a+b*log(c*x^n))^3/x,x, algorithm="giac")
 

Output:

-log(x^(b*n))/(b*n) + log(sqrt(-2*x^(2*b*n)*abs(c)^(2*b)*cos(pi*b*sgn(c) - 
 pi*b)*e^(2*a) + x^(4*b*n)*abs(c)^(4*b)*e^(4*a) + 1))/(b*n) - 1/2*(3*c^(4* 
b)*x^(4*b*n)*e^(4*a) - 2*c^(2*b)*x^(2*b*n)*e^(2*a) + 3)/((c^(2*b)*x^(2*b*n 
)*e^(2*a) - 1)^2*b*n)
 

Mupad [B] (verification not implemented)

Time = 2.48 (sec) , antiderivative size = 95, normalized size of antiderivative = 2.21 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2}{b\,n-b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}}-\ln \left (x\right )-\frac {2}{b\,n-2\,b\,n\,{\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}+b\,n\,{\mathrm {e}}^{4\,a}\,{\left (c\,x^n\right )}^{4\,b}}+\frac {\ln \left ({\mathrm {e}}^{2\,a}\,{\left (c\,x^n\right )}^{2\,b}-1\right )}{b\,n} \] Input:

int(coth(a + b*log(c*x^n))^3/x,x)
 

Output:

2/(b*n - b*n*exp(2*a)*(c*x^n)^(2*b)) - log(x) - 2/(b*n - 2*b*n*exp(2*a)*(c 
*x^n)^(2*b) + b*n*exp(4*a)*(c*x^n)^(4*b)) + log(exp(2*a)*(c*x^n)^(2*b) - 1 
)/(b*n)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 306, normalized size of antiderivative = 7.12 \[ \int \frac {\coth ^3\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {x^{4 b n} e^{4 a} c^{4 b} \mathrm {log}\left (x^{b n} e^{a} c^{2 b}+c^{b}\right )+x^{4 b n} e^{4 a} c^{4 b} \mathrm {log}\left (x^{b n} e^{a} c^{2 b}-c^{b}\right )-x^{4 b n} e^{4 a} c^{4 b} \mathrm {log}\left (x \right ) b n -x^{4 b n} e^{4 a} c^{4 b}-2 x^{2 b n} e^{2 a} c^{2 b} \mathrm {log}\left (x^{b n} e^{a} c^{2 b}+c^{b}\right )-2 x^{2 b n} e^{2 a} c^{2 b} \mathrm {log}\left (x^{b n} e^{a} c^{2 b}-c^{b}\right )+2 x^{2 b n} e^{2 a} c^{2 b} \mathrm {log}\left (x \right ) b n +\mathrm {log}\left (x^{b n} e^{a} c^{2 b}+c^{b}\right )+\mathrm {log}\left (x^{b n} e^{a} c^{2 b}-c^{b}\right )-\mathrm {log}\left (x \right ) b n -1}{b n \left (x^{4 b n} e^{4 a} c^{4 b}-2 x^{2 b n} e^{2 a} c^{2 b}+1\right )} \] Input:

int(coth(a+b*log(c*x^n))^3/x,x)
 

Output:

(x**(4*b*n)*e**(4*a)*c**(4*b)*log(x**(b*n)*e**a*c**(2*b) + c**b) + x**(4*b 
*n)*e**(4*a)*c**(4*b)*log(x**(b*n)*e**a*c**(2*b) - c**b) - x**(4*b*n)*e**( 
4*a)*c**(4*b)*log(x)*b*n - x**(4*b*n)*e**(4*a)*c**(4*b) - 2*x**(2*b*n)*e** 
(2*a)*c**(2*b)*log(x**(b*n)*e**a*c**(2*b) + c**b) - 2*x**(2*b*n)*e**(2*a)* 
c**(2*b)*log(x**(b*n)*e**a*c**(2*b) - c**b) + 2*x**(2*b*n)*e**(2*a)*c**(2* 
b)*log(x)*b*n + log(x**(b*n)*e**a*c**(2*b) + c**b) + log(x**(b*n)*e**a*c** 
(2*b) - c**b) - log(x)*b*n - 1)/(b*n*(x**(4*b*n)*e**(4*a)*c**(4*b) - 2*x** 
(2*b*n)*e**(2*a)*c**(2*b) + 1))