\(\int \frac {\sqrt {\text {sech}(a+b \log (c x^n))}}{x} \, dx\) [198]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 58 \[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=-\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{b n} \] Output:

-2*I*cosh(a+b*ln(c*x^n))^(1/2)*InverseJacobiAM(1/2*I*(a+b*ln(c*x^n)),2^(1/ 
2))*sech(a+b*ln(c*x^n))^(1/2)/b/n
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=-\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{b n} \] Input:

Integrate[Sqrt[Sech[a + b*Log[c*x^n]]]/x,x]
 

Output:

((-2*I)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2 
]*Sqrt[Sech[a + b*Log[c*x^n]]])/(b*n)
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3039, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\csc \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\sin \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {2 i \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )}{b n}\)

Input:

Int[Sqrt[Sech[a + b*Log[c*x^n]]]/x,x]
 

Output:

((-2*I)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2 
]*Sqrt[Sech[a + b*Log[c*x^n]]])/(b*n)
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(182\) vs. \(2(52)=104\).

Time = 0.48 (sec) , antiderivative size = 183, normalized size of antiderivative = 3.16

method result size
derivativedivides \(\frac {2 \sqrt {\left (2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )}{n \sqrt {2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(183\)
default \(\frac {2 \sqrt {\left (2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )}{n \sqrt {2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(183\)

Input:

int(sech(a+b*ln(c*x^n))^(1/2)/x,x,method=_RETURNVERBOSE)
 

Output:

2/n*((2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)*sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1 
/2)*(-sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-2*cosh(1/2*a+1/2*b*ln(c*x^n)) 
^2+1)^(1/2)/(2*sinh(1/2*a+1/2*b*ln(c*x^n))^4+sinh(1/2*a+1/2*b*ln(c*x^n))^2 
)^(1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))/sinh(1/2*a+1/2*b*ln 
(c*x^n))/(2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)^(1/2)/b
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\frac {2 \, \sqrt {2} {\rm weierstrassPInverse}\left (-4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}{b n} \] Input:

integrate(sech(a+b*log(c*x^n))^(1/2)/x,x, algorithm="fricas")
 

Output:

2*sqrt(2)*weierstrassPInverse(-4, 0, cosh(b*n*log(x) + b*log(c) + a) + sin 
h(b*n*log(x) + b*log(c) + a))/(b*n)
 

Sympy [F]

\[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int \frac {\sqrt {\operatorname {sech}{\left (a + b \log {\left (c x^{n} \right )} \right )}}}{x}\, dx \] Input:

integrate(sech(a+b*ln(c*x**n))**(1/2)/x,x)
 

Output:

Integral(sqrt(sech(a + b*log(c*x**n)))/x, x)
 

Maxima [F]

\[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int { \frac {\sqrt {\operatorname {sech}\left (b \log \left (c x^{n}\right ) + a\right )}}{x} \,d x } \] Input:

integrate(sech(a+b*log(c*x^n))^(1/2)/x,x, algorithm="maxima")
 

Output:

integrate(sqrt(sech(b*log(c*x^n) + a))/x, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\text {Timed out} \] Input:

integrate(sech(a+b*log(c*x^n))^(1/2)/x,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int \frac {\sqrt {\frac {1}{\mathrm {cosh}\left (a+b\,\ln \left (c\,x^n\right )\right )}}}{x} \,d x \] Input:

int((1/cosh(a + b*log(c*x^n)))^(1/2)/x,x)
 

Output:

int((1/cosh(a + b*log(c*x^n)))^(1/2)/x, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int \frac {\sqrt {\mathrm {sech}\left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}}{x}d x \] Input:

int(sech(a+b*log(c*x^n))^(1/2)/x,x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(sech(log(x**n*c)*b + a))/x,x)