\(\int \frac {\text {sech}^2(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [87]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 74 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} (a+b)^{3/2} d}+\frac {\tanh (c+d x)}{2 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )} \] Output:

1/2*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/b^(1/2)/(a+b)^(3/2)/d+1/2*tan 
h(d*x+c)/(a+b)/d/(a+b-b*tanh(d*x+c)^2)
                                                                                    
                                                                                    
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(187\) vs. \(2(74)=148\).

Time = 1.87 (sec) , antiderivative size = 187, normalized size of antiderivative = 2.53 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {(a+2 b+a \cosh (2 (c+d x))) \text {sech}^4(c+d x) \left (\frac {\text {arctanh}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (a+2 b+a \cosh (2 (c+d x))) (\cosh (2 c)-\sinh (2 c))}{\sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}+\text {sech}(2 c) \sinh (2 d x)-\frac {(a+2 b) \tanh (2 c)}{a}\right )}{8 (a+b) d \left (a+b \text {sech}^2(c+d x)\right )^2} \] Input:

Integrate[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^4*((ArcTanh[(Sech[d*x]*(Cos 
h[2*c] - Sinh[2*c])*((a + 2*b)*Sinh[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + 
 b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(a + 2*b + a*Cosh[2*(c + d*x)])*(Cosh[ 
2*c] - Sinh[2*c]))/(Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + Sech[2*c] 
*Sinh[2*d*x] - ((a + 2*b)*Tanh[2*c])/a))/(8*(a + b)*d*(a + b*Sech[c + d*x] 
^2)^2)
 

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.97, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4634, 215, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (i c+i d x)^2}{\left (a+b \sec (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {1}{\left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {\frac {\int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 \sqrt {b} (a+b)^{3/2}}+\frac {\tanh (c+d x)}{2 (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

Input:

Int[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

(ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]]/(2*Sqrt[b]*(a + b)^(3/2)) + 
Tanh[c + d*x]/(2*(a + b)*(a + b - b*Tanh[c + d*x]^2)))/d
 

Defintions of rubi rules used

rule 215
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1) 
/(2*a*(p + 1))), x] + Simp[(2*p + 3)/(2*a*(p + 1))   Int[(a + b*x^2)^(p + 1 
), x], x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[6 
*p])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(205\) vs. \(2(62)=124\).

Time = 0.48 (sec) , antiderivative size = 206, normalized size of antiderivative = 2.78

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 \left (a +b \right )}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right )}\right )}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}-\frac {-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}}{a +b}}{d}\) \(206\)
default \(\frac {-\frac {2 \left (-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 \left (a +b \right )}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right )}\right )}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}-\frac {-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}}{a +b}}{d}\) \(206\)
risch \(-\frac {a \,{\mathrm e}^{2 d x +2 c}+2 b \,{\mathrm e}^{2 d x +2 c}+a}{a d \left (a +b \right ) \left ({\mathrm e}^{4 d x +4 c} a +2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}-2 a b -2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{4 \sqrt {a b +b^{2}}\, \left (a +b \right ) d}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}+2 a b +2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{4 \sqrt {a b +b^{2}}\, \left (a +b \right ) d}\) \(231\)

Input:

int(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2*(-1/2/(a+b)*tanh(1/2*d*x+1/2*c)^3-1/2/(a+b)*tanh(1/2*d*x+1/2*c))/( 
tanh(1/2*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a- 
2*tanh(1/2*d*x+1/2*c)^2*b+a+b)-1/(a+b)*(-1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^ 
(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1/4 
/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1 
/2*c)*b^(1/2)+(a+b)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 624 vs. \(2 (65) = 130\).

Time = 0.33 (sec) , antiderivative size = 1489, normalized size of antiderivative = 20.12 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

[-1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 8 
*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)*sinh(d*x + c) + 4*(a^2*b + 3*a*b^ 
2 + 2*b^3)*sinh(d*x + c)^2 - (a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*si 
nh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2* 
(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 4*(a^2*cosh( 
d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b + b^2)*l 
og((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d 
*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a 
^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 
 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^2 + 2*a 
*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(a*b + b^2 
))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c 
)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh 
(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c 
) + a)))/((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^4 + 4*(a^4*b + 2*a 
^3*b^2 + a^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4*b + 2*a^3*b^2 + a 
^2*b^3)*d*sinh(d*x + c)^4 + 2*(a^4*b + 4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d* 
cosh(d*x + c)^2 + 2*(3*(a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + ( 
a^4*b + 4*a^3*b^2 + 5*a^2*b^3 + 2*a*b^4)*d)*sinh(d*x + c)^2 + (a^4*b + 2*a 
^3*b^2 + a^2*b^3)*d + 4*((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^...
 

Sympy [F]

\[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {sech}^{2}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sech(d*x+c)**2/(a+b*sech(d*x+c)**2)**2,x)
 

Output:

Integral(sech(c + d*x)**2/(a + b*sech(c + d*x)**2)**2, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 150 vs. \(2 (65) = 130\).

Time = 0.15 (sec) , antiderivative size = 150, normalized size of antiderivative = 2.03 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {{\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a}{{\left (a^{3} + a^{2} b + 2 \, {\left (a^{3} + 3 \, a^{2} b + 2 \, a b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{3} + a^{2} b\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} - \frac {\log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{4 \, \sqrt {{\left (a + b\right )} b} {\left (a + b\right )} d} \] Input:

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

((a + 2*b)*e^(-2*d*x - 2*c) + a)/((a^3 + a^2*b + 2*(a^3 + 3*a^2*b + 2*a*b^ 
2)*e^(-2*d*x - 2*c) + (a^3 + a^2*b)*e^(-4*d*x - 4*c))*d) - 1/4*log((a*e^(- 
2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b 
+ 2*sqrt((a + b)*b)))/(sqrt((a + b)*b)*(a + b)*d)
 

Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.76 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {\frac {\arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{\sqrt {-a b - b^{2}} {\left (a + b\right )}} - \frac {2 \, {\left (a e^{\left (2 \, d x + 2 \, c\right )} + 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}{{\left (a^{2} + a b\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}}{2 \, d} \] Input:

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

1/2*(arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b 
 - b^2)*(a + b)) - 2*(a*e^(2*d*x + 2*c) + 2*b*e^(2*d*x + 2*c) + a)/((a^2 + 
 a*b)*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) + a)) 
)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^2\,{\left (a+\frac {b}{{\mathrm {cosh}\left (c+d\,x\right )}^2}\right )}^2} \,d x \] Input:

int(1/(cosh(c + d*x)^2*(a + b/cosh(c + d*x)^2)^2),x)
 

Output:

int(1/(cosh(c + d*x)^2*(a + b/cosh(c + d*x)^2)^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 701, normalized size of antiderivative = 9.47 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {e^{4 d x +4 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) a +e^{4 d x +4 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) a -e^{4 d x +4 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+e^{2 d x +2 c} a +a +2 b \right ) a +2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) a +4 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) b +2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) a +4 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) b -2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+e^{2 d x +2 c} a +a +2 b \right ) a -4 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+e^{2 d x +2 c} a +a +2 b \right ) b +\sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) a +\sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+e^{d x +c} \sqrt {a}\right ) a -\sqrt {b}\, \sqrt {a +b}\, \mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+e^{2 d x +2 c} a +a +2 b \right ) a +2 e^{4 d x +4 c} a b +2 e^{4 d x +4 c} b^{2}-2 a b -2 b^{2}}{4 b d \left (e^{4 d x +4 c} a^{3}+2 e^{4 d x +4 c} a^{2} b +e^{4 d x +4 c} a \,b^{2}+2 e^{2 d x +2 c} a^{3}+8 e^{2 d x +2 c} a^{2} b +10 e^{2 d x +2 c} a \,b^{2}+4 e^{2 d x +2 c} b^{3}+a^{3}+2 a^{2} b +a \,b^{2}\right )} \] Input:

int(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x)
 

Output:

(e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - 
a - 2*b) + e**(c + d*x)*sqrt(a))*a + e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)* 
log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a - e**( 
4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d 
*x)*a + a + 2*b)*a + 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2* 
sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a + 4*e**(2*c + 2*d 
*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e** 
(c + d*x)*sqrt(a))*b + 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*s 
qrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a + 4*e**(2*c + 2*d* 
x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + 
 d*x)*sqrt(a))*b - 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sq 
rt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a - 4*e**(2*c + 2*d*x)*sqrt(b)*s 
qrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*b + s 
qrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + 
d*x)*sqrt(a))*a + sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 
 2*b) + e**(c + d*x)*sqrt(a))*a - sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a 
 + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a + 2*e**(4*c + 4*d*x)*a*b + 2*e**(4 
*c + 4*d*x)*b**2 - 2*a*b - 2*b**2)/(4*b*d*(e**(4*c + 4*d*x)*a**3 + 2*e**(4 
*c + 4*d*x)*a**2*b + e**(4*c + 4*d*x)*a*b**2 + 2*e**(2*c + 2*d*x)*a**3 + 8 
*e**(2*c + 2*d*x)*a**2*b + 10*e**(2*c + 2*d*x)*a*b**2 + 4*e**(2*c + 2*d...