\(\int \frac {\text {sech}^4(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [89]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 83 \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {(a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 b^{3/2} (a+b)^{3/2} d}-\frac {a \tanh (c+d x)}{2 b (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )} \] Output:

1/2*(a+2*b)*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/b^(3/2)/(a+b)^(3/2)/d 
-1/2*a*tanh(d*x+c)/b/(a+b)/d/(a+b-b*tanh(d*x+c)^2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.06 \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=4 \left (\frac {(a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{8 b^{3/2} (a+b)^{3/2} d}-\frac {a \sinh (2 (c+d x))}{8 b (a+b) d (a+2 b+a \cosh (2 (c+d x)))}\right ) \] Input:

Integrate[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

4*(((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(8*b^(3/2)*(a 
+ b)^(3/2)*d) - (a*Sinh[2*(c + d*x)])/(8*b*(a + b)*d*(a + 2*b + a*Cosh[2*( 
c + d*x)])))
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4634, 298, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (i c+i d x)^4}{\left (a+b \sec (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {1-\tanh ^2(c+d x)}{\left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 298

\(\displaystyle \frac {\frac {(a+2 b) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{2 b (a+b)}-\frac {a \tanh (c+d x)}{2 b (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {(a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 b^{3/2} (a+b)^{3/2}}-\frac {a \tanh (c+d x)}{2 b (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

Input:

Int[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

(((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(2*b^(3/2)*(a + 
b)^(3/2)) - (a*Tanh[c + d*x])/(2*b*(a + b)*(a + b - b*Tanh[c + d*x]^2)))/d
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 298
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-( 
b*c - a*d))*x*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[(a*d - b*c*( 
2*p + 3))/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, 
 c, d, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/2 + p, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(221\) vs. \(2(71)=142\).

Time = 0.50 (sec) , antiderivative size = 222, normalized size of antiderivative = 2.67

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 b \left (a +b \right )}+\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 b \left (a +b \right )}\right )}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}-\frac {\left (a +2 b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{b \left (a +b \right )}}{d}\) \(222\)
default \(\frac {-\frac {2 \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 b \left (a +b \right )}+\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 b \left (a +b \right )}\right )}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}-\frac {\left (a +2 b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{b \left (a +b \right )}}{d}\) \(222\)
risch \(\frac {a \,{\mathrm e}^{2 d x +2 c}+2 b \,{\mathrm e}^{2 d x +2 c}+a}{d b \left (a +b \right ) \left ({\mathrm e}^{4 d x +4 c} a +2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}-2 a b -2 b^{2}}{a \sqrt {a b +b^{2}}}\right ) a}{4 \sqrt {a b +b^{2}}\, \left (a +b \right ) d b}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}-2 a b -2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{2 \sqrt {a b +b^{2}}\, \left (a +b \right ) d}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}+2 a b +2 b^{2}}{a \sqrt {a b +b^{2}}}\right ) a}{4 \sqrt {a b +b^{2}}\, \left (a +b \right ) d b}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}+2 a b +2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{2 \sqrt {a b +b^{2}}\, \left (a +b \right ) d}\) \(390\)

Input:

int(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2*(1/2*a/b/(a+b)*tanh(1/2*d*x+1/2*c)^3+1/2*a/b/(a+b)*tanh(1/2*d*x+1/ 
2*c))/(tanh(1/2*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2* 
c)^2*a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)-(a+2*b)/b/(a+b)*(-1/4/b^(1/2)/(a+b)^ 
(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+( 
a+b)^(1/2))+1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2 
*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 664 vs. \(2 (74) = 148\).

Time = 0.27 (sec) , antiderivative size = 1569, normalized size of antiderivative = 18.90 \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

[1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 8* 
(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)*sinh(d*x + c) + 4*(a^2*b + 3*a*b^2 
 + 2*b^3)*sinh(d*x + c)^2 + ((a^2 + 2*a*b)*cosh(d*x + c)^4 + 4*(a^2 + 2*a* 
b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b)*sinh(d*x + c)^4 + 2*(a^2 
+ 4*a*b + 4*b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b)*cosh(d*x + c)^2 + a^ 
2 + 4*a*b + 4*b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + 4*((a^2 + 2*a*b)*cosh(d 
*x + c)^3 + (a^2 + 4*a*b + 4*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b + 
 b^2)*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2 
*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c 
)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x 
 + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^ 
2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(a* 
b + b^2))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh( 
d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2* 
b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh( 
d*x + c) + a)))/((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^4 + 4*(a^3* 
b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + 2*a^ 
2*b^3 + a*b^4)*d*sinh(d*x + c)^4 + 2*(a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^ 
5)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^ 
2 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d)*sinh(d*x + c)^2 + (a^3*b...
 

Sympy [F]

\[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {sech}^{4}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sech(d*x+c)**4/(a+b*sech(d*x+c)**2)**2,x)
 

Output:

Integral(sech(c + d*x)**4/(a + b*sech(c + d*x)**2)**2, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 165 vs. \(2 (74) = 148\).

Time = 0.17 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.99 \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=-\frac {{\left (a + 2 \, b\right )} \log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{4 \, \sqrt {{\left (a + b\right )} b} {\left (a b + b^{2}\right )} d} - \frac {{\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a}{{\left (a^{2} b + a b^{2} + 2 \, {\left (a^{2} b + 3 \, a b^{2} + 2 \, b^{3}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{2} b + a b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} \] Input:

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

-1/4*(a + 2*b)*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e 
^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/(sqrt((a + b)*b)*(a*b + b^ 
2)*d) - ((a + 2*b)*e^(-2*d*x - 2*c) + a)/((a^2*b + a*b^2 + 2*(a^2*b + 3*a* 
b^2 + 2*b^3)*e^(-2*d*x - 2*c) + (a^2*b + a*b^2)*e^(-4*d*x - 4*c))*d)
 

Giac [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.67 \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {\frac {{\left (a + 2 \, b\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{{\left (a b + b^{2}\right )} \sqrt {-a b - b^{2}}} + \frac {2 \, {\left (a e^{\left (2 \, d x + 2 \, c\right )} + 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}{{\left (a b + b^{2}\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}}}{2 \, d} \] Input:

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

1/2*((a + 2*b)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/ 
((a*b + b^2)*sqrt(-a*b - b^2)) + 2*(a*e^(2*d*x + 2*c) + 2*b*e^(2*d*x + 2*c 
) + a)/((a*b + b^2)*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d* 
x + 2*c) + a)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^4\,{\left (a+\frac {b}{{\mathrm {cosh}\left (c+d\,x\right )}^2}\right )}^2} \,d x \] Input:

int(1/(cosh(c + d*x)^4*(a + b/cosh(c + d*x)^2)^2),x)
 

Output:

int(1/(cosh(c + d*x)^4*(a + b/cosh(c + d*x)^2)^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 1133, normalized size of antiderivative = 13.65 \[ \int \frac {\text {sech}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x)
 

Output:

(e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - 
a - 2*b) + e**(c + d*x)*sqrt(a))*a**2 + 2*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a 
+ b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))* 
a*b + e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) 
- a - 2*b) + e**(c + d*x)*sqrt(a))*a**2 + 2*e**(4*c + 4*d*x)*sqrt(b)*sqrt( 
a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a 
*b - e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**( 
2*c + 2*d*x)*a + a + 2*b)*a**2 - 2*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*lo 
g(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a*b + 2*e**(2*c + 
2*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + 
e**(c + d*x)*sqrt(a))*a**2 + 8*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log( - 
 sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b + 8*e** 
(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 
2*b) + e**(c + d*x)*sqrt(a))*b**2 + 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b) 
*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**2 + 
8*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a 
- 2*b) + e**(c + d*x)*sqrt(a))*a*b + 8*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b 
)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*b**2 - 
 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**(2* 
c + 2*d*x)*a + a + 2*b)*a**2 - 8*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a + b)*l...