\(\int \frac {\tanh ^5(c+d x)}{(a+b \text {sech}^2(c+d x))^3} \, dx\) [159]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 77 \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=-\frac {(a+b)^2}{4 a^3 d \left (b+a \cosh ^2(c+d x)\right )^2}+\frac {a+b}{a^3 d \left (b+a \cosh ^2(c+d x)\right )}+\frac {\log \left (b+a \cosh ^2(c+d x)\right )}{2 a^3 d} \] Output:

-1/4*(a+b)^2/a^3/d/(b+a*cosh(d*x+c)^2)^2+(a+b)/a^3/d/(b+a*cosh(d*x+c)^2)+1 
/2*ln(b+a*cosh(d*x+c)^2)/a^3/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.85 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.77 \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\frac {2 \left (a^2+4 a b+3 b^2\right )+(a+2 b)^2 \log (a+2 b+a \cosh (2 (c+d x)))+a^2 \cosh ^2(2 (c+d x)) \log (a+2 b+a \cosh (2 (c+d x)))+2 a \cosh (2 (c+d x)) (2 (a+b)+(a+2 b) \log (a+2 b+a \cosh (2 (c+d x))))}{2 a^3 d (a+2 b+a \cosh (2 (c+d x)))^2} \] Input:

Integrate[Tanh[c + d*x]^5/(a + b*Sech[c + d*x]^2)^3,x]
 

Output:

(2*(a^2 + 4*a*b + 3*b^2) + (a + 2*b)^2*Log[a + 2*b + a*Cosh[2*(c + d*x)]] 
+ a^2*Cosh[2*(c + d*x)]^2*Log[a + 2*b + a*Cosh[2*(c + d*x)]] + 2*a*Cosh[2* 
(c + d*x)]*(2*(a + b) + (a + 2*b)*Log[a + 2*b + a*Cosh[2*(c + d*x)]]))/(2* 
a^3*d*(a + 2*b + a*Cosh[2*(c + d*x)])^2)
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3042, 26, 4626, 353, 49, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \tan (i c+i d x)^5}{\left (a+b \sec (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\tan (i c+i d x)^5}{\left (b \sec (i c+i d x)^2+a\right )^3}dx\)

\(\Big \downarrow \) 4626

\(\displaystyle \frac {\int \frac {\cosh (c+d x) \left (1-\cosh ^2(c+d x)\right )^2}{\left (a \cosh ^2(c+d x)+b\right )^3}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {\int \frac {\left (1-\cosh ^2(c+d x)\right )^2}{\left (a \cosh ^2(c+d x)+b\right )^3}d\cosh ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 49

\(\displaystyle \frac {\int \left (\frac {(a+b)^2}{a^2 \left (a \cosh ^2(c+d x)+b\right )^3}-\frac {2 (a+b)}{a^2 \left (a \cosh ^2(c+d x)+b\right )^2}+\frac {1}{a^2 \left (a \cosh ^2(c+d x)+b\right )}\right )d\cosh ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {(a+b)^2}{2 a^3 \left (a \cosh ^2(c+d x)+b\right )^2}+\frac {2 (a+b)}{a^3 \left (a \cosh ^2(c+d x)+b\right )}+\frac {\log \left (a \cosh ^2(c+d x)+b\right )}{a^3}}{2 d}\)

Input:

Int[Tanh[c + d*x]^5/(a + b*Sech[c + d*x]^2)^3,x]
 

Output:

(-1/2*(a + b)^2/(a^3*(b + a*Cosh[c + d*x]^2)^2) + (2*(a + b))/(a^3*(b + a* 
Cosh[c + d*x]^2)) + Log[b + a*Cosh[c + d*x]^2]/a^3)/(2*d)
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 49
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] 
&& IGtQ[m, 0] && IGtQ[m + n + 2, 0]
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4626
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_ 
)]^(m_.), x_Symbol] :> Module[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-(f 
*ff^(m + n*p - 1))^(-1)   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff* 
x)^n)^p/x^(m + n*p)), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, n} 
, x] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(183\) vs. \(2(73)=146\).

Time = 136.53 (sec) , antiderivative size = 184, normalized size of antiderivative = 2.39

method result size
risch \(-\frac {x}{a^{3}}-\frac {2 c}{a^{3} d}+\frac {4 \,{\mathrm e}^{2 d x +2 c} \left (a^{2} {\mathrm e}^{4 d x +4 c}+a b \,{\mathrm e}^{4 d x +4 c}+a^{2} {\mathrm e}^{2 d x +2 c}+4 a b \,{\mathrm e}^{2 d x +2 c}+3 b^{2} {\mathrm e}^{2 d x +2 c}+a^{2}+a b \right )}{a^{3} d \left ({\mathrm e}^{4 d x +4 c} a +2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )^{2}}+\frac {\ln \left ({\mathrm e}^{4 d x +4 c}+\frac {2 \left (a +2 b \right ) {\mathrm e}^{2 d x +2 c}}{a}+1\right )}{2 a^{3} d}\) \(184\)
derivativedivides \(\frac {\frac {\frac {\left (-2 a^{2}-2 a b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 \left (2 a -b \right ) a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (a +b \right )}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{2}}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}{2}}{a^{3}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}}{d}\) \(226\)
default \(\frac {\frac {\frac {\left (-2 a^{2}-2 a b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 \left (2 a -b \right ) a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (a +b \right )}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{2}}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}{2}}{a^{3}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}}{d}\) \(226\)

Input:

int(tanh(d*x+c)^5/(a+b*sech(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 

Output:

-x/a^3-2/a^3/d*c+4/a^3*exp(2*d*x+2*c)*(a^2*exp(4*d*x+4*c)+a*b*exp(4*d*x+4* 
c)+a^2*exp(2*d*x+2*c)+4*a*b*exp(2*d*x+2*c)+3*b^2*exp(2*d*x+2*c)+a^2+a*b)/d 
/(exp(4*d*x+4*c)*a+2*a*exp(2*d*x+2*c)+4*b*exp(2*d*x+2*c)+a)^2+1/2/a^3/d*ln 
(exp(4*d*x+4*c)+2*(a+2*b)/a*exp(2*d*x+2*c)+1)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1741 vs. \(2 (73) = 146\).

Time = 0.25 (sec) , antiderivative size = 1741, normalized size of antiderivative = 22.61 \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(tanh(d*x+c)^5/(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")
 

Output:

-1/2*(2*a^2*d*x*cosh(d*x + c)^8 + 16*a^2*d*x*cosh(d*x + c)*sinh(d*x + c)^7 
 + 2*a^2*d*x*sinh(d*x + c)^8 + 8*((a^2 + 2*a*b)*d*x - a^2 - a*b)*cosh(d*x 
+ c)^6 + 8*(7*a^2*d*x*cosh(d*x + c)^2 + (a^2 + 2*a*b)*d*x - a^2 - a*b)*sin 
h(d*x + c)^6 + 16*(7*a^2*d*x*cosh(d*x + c)^3 + 3*((a^2 + 2*a*b)*d*x - a^2 
- a*b)*cosh(d*x + c))*sinh(d*x + c)^5 + 4*((3*a^2 + 8*a*b + 8*b^2)*d*x - 2 
*a^2 - 8*a*b - 6*b^2)*cosh(d*x + c)^4 + 4*(35*a^2*d*x*cosh(d*x + c)^4 + (3 
*a^2 + 8*a*b + 8*b^2)*d*x + 30*((a^2 + 2*a*b)*d*x - a^2 - a*b)*cosh(d*x + 
c)^2 - 2*a^2 - 8*a*b - 6*b^2)*sinh(d*x + c)^4 + 2*a^2*d*x + 16*(7*a^2*d*x* 
cosh(d*x + c)^5 + 10*((a^2 + 2*a*b)*d*x - a^2 - a*b)*cosh(d*x + c)^3 + ((3 
*a^2 + 8*a*b + 8*b^2)*d*x - 2*a^2 - 8*a*b - 6*b^2)*cosh(d*x + c))*sinh(d*x 
 + c)^3 + 8*((a^2 + 2*a*b)*d*x - a^2 - a*b)*cosh(d*x + c)^2 + 8*(7*a^2*d*x 
*cosh(d*x + c)^6 + 15*((a^2 + 2*a*b)*d*x - a^2 - a*b)*cosh(d*x + c)^4 + (a 
^2 + 2*a*b)*d*x + 3*((3*a^2 + 8*a*b + 8*b^2)*d*x - 2*a^2 - 8*a*b - 6*b^2)* 
cosh(d*x + c)^2 - a^2 - a*b)*sinh(d*x + c)^2 - (a^2*cosh(d*x + c)^8 + 8*a^ 
2*cosh(d*x + c)*sinh(d*x + c)^7 + a^2*sinh(d*x + c)^8 + 4*(a^2 + 2*a*b)*co 
sh(d*x + c)^6 + 4*(7*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^6 + 
8*(7*a^2*cosh(d*x + c)^3 + 3*(a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c)^5 
+ 2*(3*a^2 + 8*a*b + 8*b^2)*cosh(d*x + c)^4 + 2*(35*a^2*cosh(d*x + c)^4 + 
30*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 3*a^2 + 8*a*b + 8*b^2)*sinh(d*x + c)^4 
+ 8*(7*a^2*cosh(d*x + c)^5 + 10*(a^2 + 2*a*b)*cosh(d*x + c)^3 + (3*a^2 ...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Timed out} \] Input:

integrate(tanh(d*x+c)**5/(a+b*sech(d*x+c)**2)**3,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 206 vs. \(2 (73) = 146\).

Time = 0.06 (sec) , antiderivative size = 206, normalized size of antiderivative = 2.68 \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\frac {4 \, {\left ({\left (a^{2} + a b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{2} + 4 \, a b + 3 \, b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + {\left (a^{2} + a b\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )}}{{\left (a^{5} e^{\left (-8 \, d x - 8 \, c\right )} + a^{5} + 4 \, {\left (a^{5} + 2 \, a^{4} b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \, {\left (3 \, a^{5} + 8 \, a^{4} b + 8 \, a^{3} b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, {\left (a^{5} + 2 \, a^{4} b\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )} d} + \frac {d x + c}{a^{3} d} + \frac {\log \left (2 \, {\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a e^{\left (-4 \, d x - 4 \, c\right )} + a\right )}{2 \, a^{3} d} \] Input:

integrate(tanh(d*x+c)^5/(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")
 

Output:

4*((a^2 + a*b)*e^(-2*d*x - 2*c) + (a^2 + 4*a*b + 3*b^2)*e^(-4*d*x - 4*c) + 
 (a^2 + a*b)*e^(-6*d*x - 6*c))/((a^5*e^(-8*d*x - 8*c) + a^5 + 4*(a^5 + 2*a 
^4*b)*e^(-2*d*x - 2*c) + 2*(3*a^5 + 8*a^4*b + 8*a^3*b^2)*e^(-4*d*x - 4*c) 
+ 4*(a^5 + 2*a^4*b)*e^(-6*d*x - 6*c))*d) + (d*x + c)/(a^3*d) + 1/2*log(2*( 
a + 2*b)*e^(-2*d*x - 2*c) + a*e^(-4*d*x - 4*c) + a)/(a^3*d)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tanh(d*x+c)^5/(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Limit: Max order reached or unable 
to make series expansion Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^6\,{\mathrm {tanh}\left (c+d\,x\right )}^5}{{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^3} \,d x \] Input:

int(tanh(c + d*x)^5/(a + b/cosh(c + d*x)^2)^3,x)
 

Output:

int((cosh(c + d*x)^6*tanh(c + d*x)^5)/(b + a*cosh(c + d*x)^2)^3, x)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 2301, normalized size of antiderivative = 29.88 \[ \int \frac {\tanh ^5(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx =\text {Too large to display} \] Input:

int(tanh(d*x+c)^5/(a+b*sech(d*x+c)^2)^3,x)
 

Output:

(e**(8*c + 8*d*x)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d 
*x)*sqrt(a))*a**3 + 2*e**(8*c + 8*d*x)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - 
 a - 2*b) + e**(c + d*x)*sqrt(a))*a**2*b + e**(8*c + 8*d*x)*log(sqrt(2*sqr 
t(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**3 + 2*e**(8*c + 8*d 
*x)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**2 
*b + e**(8*c + 8*d*x)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 
 2*b)*a**3 + 2*e**(8*c + 8*d*x)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d* 
x)*a + a + 2*b)*a**2*b - 2*e**(8*c + 8*d*x)*a**3*d*x - 2*e**(8*c + 8*d*x)* 
a**3 - 4*e**(8*c + 8*d*x)*a**2*b*d*x - 2*e**(8*c + 8*d*x)*a**2*b + 4*e**(6 
*c + 6*d*x)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sq 
rt(a))*a**3 + 16*e**(6*c + 6*d*x)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 
2*b) + e**(c + d*x)*sqrt(a))*a**2*b + 16*e**(6*c + 6*d*x)*log( - sqrt(2*sq 
rt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b**2 + 4*e**(6*c + 
6*d*x)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a 
**3 + 16*e**(6*c + 6*d*x)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**( 
c + d*x)*sqrt(a))*a**2*b + 16*e**(6*c + 6*d*x)*log(sqrt(2*sqrt(b)*sqrt(a + 
 b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b**2 + 4*e**(6*c + 6*d*x)*log(2*s 
qrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a**3 + 16*e**(6*c + 6*d 
*x)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a**2*b + 16* 
e**(6*c + 6*d*x)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2...