\(\int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx\) [202]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 90 \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {(2 a+3 b) \text {arctanh}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a+b}}\right )}{2 (a+b)^{3/2}}-\frac {\coth ^2(x) \sqrt {a+b \text {sech}^2(x)}}{2 (a+b)} \] Output:

arctanh((a+b*sech(x)^2)^(1/2)/a^(1/2))/a^(1/2)-1/2*(2*a+3*b)*arctanh((a+b* 
sech(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)-coth(x)^2*(a+b*sech(x)^2)^(1/2)/ 
(2*a+2*b)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.77 \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\frac {-\left ((a+2 b+a \cosh (2 x)) \text {csch}^2(x)\right )+\frac {\sqrt {2} \sqrt {a+2 b+a \cosh (2 x)} \left (-\sqrt {a} (2 a+3 b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a+b} \cosh (x)}{\sqrt {a+2 b+a \cosh (2 x)}}\right )+2 (a+b)^{3/2} \log \left (\sqrt {2} \sqrt {a} \cosh (x)+\sqrt {a+2 b+a \cosh (2 x)}\right )\right ) \text {sech}(x)}{\sqrt {a} \sqrt {a+b}}}{4 (a+b) \sqrt {a+b \text {sech}^2(x)}} \] Input:

Integrate[Coth[x]^3/Sqrt[a + b*Sech[x]^2],x]
 

Output:

(-((a + 2*b + a*Cosh[2*x])*Csch[x]^2) + (Sqrt[2]*Sqrt[a + 2*b + a*Cosh[2*x 
]]*(-(Sqrt[a]*(2*a + 3*b)*ArcTanh[(Sqrt[2]*Sqrt[a + b]*Cosh[x])/Sqrt[a + 2 
*b + a*Cosh[2*x]]]) + 2*(a + b)^(3/2)*Log[Sqrt[2]*Sqrt[a]*Cosh[x] + Sqrt[a 
 + 2*b + a*Cosh[2*x]]])*Sech[x])/(Sqrt[a]*Sqrt[a + b]))/(4*(a + b)*Sqrt[a 
+ b*Sech[x]^2])
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.22, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {3042, 26, 4627, 354, 114, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i}{\tan (i x)^3 \sqrt {a+b \sec (i x)^2}}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {1}{\sqrt {b \sec (i x)^2+a} \tan (i x)^3}dx\)

\(\Big \downarrow \) 4627

\(\displaystyle -\int \frac {\cosh (x)}{\left (1-\text {sech}^2(x)\right )^2 \sqrt {b \text {sech}^2(x)+a}}d\text {sech}(x)\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {1}{2} \int \frac {\cosh (x)}{\left (1-\text {sech}^2(x)\right )^2 \sqrt {b \text {sech}^2(x)+a}}d\text {sech}^2(x)\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {1}{2} \left (\frac {\int -\frac {\cosh (x) \left (b \text {sech}^2(x)+2 a+2 b\right )}{2 \left (1-\text {sech}^2(x)\right ) \sqrt {b \text {sech}^2(x)+a}}d\text {sech}^2(x)}{a+b}-\frac {\sqrt {a+b \text {sech}^2(x)}}{(a+b) \left (1-\text {sech}^2(x)\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (-\frac {\int \frac {\cosh (x) \left (b \text {sech}^2(x)+2 (a+b)\right )}{\left (1-\text {sech}^2(x)\right ) \sqrt {b \text {sech}^2(x)+a}}d\text {sech}^2(x)}{2 (a+b)}-\frac {\sqrt {a+b \text {sech}^2(x)}}{(a+b) \left (1-\text {sech}^2(x)\right )}\right )\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{2} \left (-\frac {(2 a+3 b) \int \frac {1}{\left (1-\text {sech}^2(x)\right ) \sqrt {b \text {sech}^2(x)+a}}d\text {sech}^2(x)+2 (a+b) \int \frac {\cosh (x)}{\sqrt {b \text {sech}^2(x)+a}}d\text {sech}^2(x)}{2 (a+b)}-\frac {\sqrt {a+b \text {sech}^2(x)}}{(a+b) \left (1-\text {sech}^2(x)\right )}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (-\frac {\frac {2 (2 a+3 b) \int \frac {1}{\frac {a+b}{b}-\frac {\text {sech}^4(x)}{b}}d\sqrt {b \text {sech}^2(x)+a}}{b}+\frac {4 (a+b) \int \frac {1}{\frac {\text {sech}^4(x)}{b}-\frac {a}{b}}d\sqrt {b \text {sech}^2(x)+a}}{b}}{2 (a+b)}-\frac {\sqrt {a+b \text {sech}^2(x)}}{(a+b) \left (1-\text {sech}^2(x)\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left (-\frac {\frac {2 (2 a+3 b) \text {arctanh}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {4 (a+b) \text {arctanh}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )}{\sqrt {a}}}{2 (a+b)}-\frac {\sqrt {a+b \text {sech}^2(x)}}{(a+b) \left (1-\text {sech}^2(x)\right )}\right )\)

Input:

Int[Coth[x]^3/Sqrt[a + b*Sech[x]^2],x]
 

Output:

(-1/2*((-4*(a + b)*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]])/Sqrt[a] + (2*(2 
*a + 3*b)*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a + b]])/Sqrt[a + b])/(a + b) 
 - Sqrt[a + b*Sech[x]^2]/((a + b)*(1 - Sech[x]^2)))/2
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4627
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si 
mp[1/f   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x), x] 
, x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[( 
m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || Integers 
Q[2*n, p])
 
Maple [F]

\[\int \frac {\coth \left (x \right )^{3}}{\sqrt {a +\operatorname {sech}\left (x \right )^{2} b}}d x\]

Input:

int(coth(x)^3/(a+sech(x)^2*b)^(1/2),x)
 

Output:

int(coth(x)^3/(a+sech(x)^2*b)^(1/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1154 vs. \(2 (72) = 144\).

Time = 0.30 (sec) , antiderivative size = 6357, normalized size of antiderivative = 70.63 \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\text {Too large to display} \] Input:

integrate(coth(x)^3/(a+b*sech(x)^2)^(1/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\int \frac {\coth ^{3}{\left (x \right )}}{\sqrt {a + b \operatorname {sech}^{2}{\left (x \right )}}}\, dx \] Input:

integrate(coth(x)**3/(a+b*sech(x)**2)**(1/2),x)
 

Output:

Integral(coth(x)**3/sqrt(a + b*sech(x)**2), x)
 

Maxima [F]

\[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\int { \frac {\coth \left (x\right )^{3}}{\sqrt {b \operatorname {sech}\left (x\right )^{2} + a}} \,d x } \] Input:

integrate(coth(x)^3/(a+b*sech(x)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(coth(x)^3/sqrt(b*sech(x)^2 + a), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(coth(x)^3/(a+b*sech(x)^2)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\int \frac {{\mathrm {coth}\left (x\right )}^3}{\sqrt {a+\frac {b}{{\mathrm {cosh}\left (x\right )}^2}}} \,d x \] Input:

int(coth(x)^3/(a + b/cosh(x)^2)^(1/2),x)
 

Output:

int(coth(x)^3/(a + b/cosh(x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\coth ^3(x)}{\sqrt {a+b \text {sech}^2(x)}} \, dx=\int \frac {\sqrt {\mathrm {sech}\left (x \right )^{2} b +a}\, \coth \left (x \right )^{3}}{\mathrm {sech}\left (x \right )^{2} b +a}d x \] Input:

int(coth(x)^3/(a+b*sech(x)^2)^(1/2),x)
 

Output:

int((sqrt(sech(x)**2*b + a)*coth(x)**3)/(sech(x)**2*b + a),x)