\(\int \frac {\sinh ^2(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [35]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 131 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=-\frac {(a+4 b) x}{2 a^3}+\frac {\sqrt {b} (3 a+4 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 a^3 \sqrt {a+b} d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 a d \left (a+b-b \tanh ^2(c+d x)\right )}+\frac {b \tanh (c+d x)}{a^2 d \left (a+b-b \tanh ^2(c+d x)\right )} \] Output:

-1/2*(a+4*b)*x/a^3+1/2*b^(1/2)*(3*a+4*b)*arctanh(b^(1/2)*tanh(d*x+c)/(a+b) 
^(1/2))/a^3/(a+b)^(1/2)/d+1/2*cosh(d*x+c)*sinh(d*x+c)/a/d/(a+b-b*tanh(d*x+ 
c)^2)+b*tanh(d*x+c)/a^2/d/(a+b-b*tanh(d*x+c)^2)
                                                                                    
                                                                                    
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(659\) vs. \(2(131)=262\).

Time = 9.64 (sec) , antiderivative size = 659, normalized size of antiderivative = 5.03 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {(a+2 b+a \cosh (2 (c+d x)))^2 \text {sech}^4(c+d x) \left (\frac {2 \left (16 x+\frac {\left (a^3-6 a^2 b-24 a b^2-16 b^3\right ) \text {arctanh}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (\cosh (2 c)-\sinh (2 c))}{b (a+b)^{3/2} d \sqrt {b (\cosh (c)-\sinh (c))^4}}+\frac {\left (a^2+8 a b+8 b^2\right ) \text {sech}(2 c) ((a+2 b) \sinh (2 c)-a \sinh (2 d x))}{b (a+b) d (a+2 b+a \cosh (2 (c+d x)))}\right )}{a^2}+\frac {-64 (a+2 b) x+\frac {\left (-a^4+16 a^3 b+144 a^2 b^2+256 a b^3+128 b^4\right ) \text {arctanh}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (\cosh (2 c)-\sinh (2 c))}{b (a+b)^{3/2} d \sqrt {b (\cosh (c)-\sinh (c))^4}}+\frac {16 a \cosh (2 d x) \sinh (2 c)}{d}+\frac {16 a \cosh (2 c) \sinh (2 d x)}{d}-\frac {\left (a^3+18 a^2 b+48 a b^2+32 b^3\right ) \text {sech}(2 c) ((a+2 b) \sinh (2 c)-a \sinh (2 d x))}{b (a+b) d (a+2 b+a \cosh (2 (c+d x)))}}{a^3}+\frac {2 \left (-\frac {(a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a \sqrt {b} \sinh (2 (c+d x))}{(a+b) (a+2 b+a \cosh (2 (c+d x)))}\right )}{b^{3/2} d}-\frac {-\frac {a \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {\sqrt {b} (a+2 b) \sinh (2 (c+d x))}{(a+b) (a+2 b+a \cosh (2 (c+d x)))}}{b^{3/2} d}\right )}{256 \left (a+b \text {sech}^2(c+d x)\right )^2} \] Input:

Integrate[Sinh[c + d*x]^2/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

((a + 2*b + a*Cosh[2*(c + d*x)])^2*Sech[c + d*x]^4*((2*(16*x + ((a^3 - 6*a 
^2*b - 24*a*b^2 - 16*b^3)*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 
 2*b)*Sinh[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sin 
h[c])^4])]*(Cosh[2*c] - Sinh[2*c]))/(b*(a + b)^(3/2)*d*Sqrt[b*(Cosh[c] - S 
inh[c])^4]) + ((a^2 + 8*a*b + 8*b^2)*Sech[2*c]*((a + 2*b)*Sinh[2*c] - a*Si 
nh[2*d*x]))/(b*(a + b)*d*(a + 2*b + a*Cosh[2*(c + d*x)]))))/a^2 + (-64*(a 
+ 2*b)*x + ((-a^4 + 16*a^3*b + 144*a^2*b^2 + 256*a*b^3 + 128*b^4)*ArcTanh[ 
(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Sinh[d*x] - a*Sinh[2*c + d*x 
]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(Cosh[2*c] - Sinh[2*c]) 
)/(b*(a + b)^(3/2)*d*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + (16*a*Cosh[2*d*x]*Si 
nh[2*c])/d + (16*a*Cosh[2*c]*Sinh[2*d*x])/d - ((a^3 + 18*a^2*b + 48*a*b^2 
+ 32*b^3)*Sech[2*c]*((a + 2*b)*Sinh[2*c] - a*Sinh[2*d*x]))/(b*(a + b)*d*(a 
 + 2*b + a*Cosh[2*(c + d*x)])))/a^3 + (2*(-(((a + 2*b)*ArcTanh[(Sqrt[b]*Ta 
nh[c + d*x])/Sqrt[a + b]])/(a + b)^(3/2)) + (a*Sqrt[b]*Sinh[2*(c + d*x)])/ 
((a + b)*(a + 2*b + a*Cosh[2*(c + d*x)]))))/(b^(3/2)*d) - (-((a*ArcTanh[(S 
qrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a + b)^(3/2)) + (Sqrt[b]*(a + 2*b)*Si 
nh[2*(c + d*x)])/((a + b)*(a + 2*b + a*Cosh[2*(c + d*x)])))/(b^(3/2)*d)))/ 
(256*(a + b*Sech[c + d*x]^2)^2)
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.14, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 25, 4620, 373, 402, 27, 397, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\sin (i c+i d x)^2}{\left (a+b \sec (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\sin (i c+i d x)^2}{\left (b \sec (i c+i d x)^2+a\right )^2}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right )^2 \left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )}-\frac {\int \frac {3 b \tanh ^2(c+d x)+a+b}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{2 a}}{d}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )}-\frac {-\frac {\int -\frac {2 (a+b) \left (2 b \tanh ^2(c+d x)+a+2 b\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{2 a (a+b)}-\frac {2 b \tanh (c+d x)}{a \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )}-\frac {\frac {\int \frac {2 b \tanh ^2(c+d x)+a+2 b}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{a}-\frac {2 b \tanh (c+d x)}{a \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )}-\frac {\frac {\frac {(a+4 b) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a}-\frac {b (3 a+4 b) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{a}}{a}-\frac {2 b \tanh (c+d x)}{a \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )}-\frac {\frac {\frac {(a+4 b) \text {arctanh}(\tanh (c+d x))}{a}-\frac {b (3 a+4 b) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{a}}{a}-\frac {2 b \tanh (c+d x)}{a \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )}-\frac {\frac {\frac {(a+4 b) \text {arctanh}(\tanh (c+d x))}{a}-\frac {\sqrt {b} (3 a+4 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{a \sqrt {a+b}}}{a}-\frac {2 b \tanh (c+d x)}{a \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}}{d}\)

Input:

Int[Sinh[c + d*x]^2/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

(Tanh[c + d*x]/(2*a*(1 - Tanh[c + d*x]^2)*(a + b - b*Tanh[c + d*x]^2)) - ( 
(((a + 4*b)*ArcTanh[Tanh[c + d*x]])/a - (Sqrt[b]*(3*a + 4*b)*ArcTanh[(Sqrt 
[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a*Sqrt[a + b]))/a - (2*b*Tanh[c + d*x])/ 
(a*(a + b - b*Tanh[c + d*x]^2)))/(2*a))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(324\) vs. \(2(117)=234\).

Time = 83.70 (sec) , antiderivative size = 325, normalized size of antiderivative = 2.48

method result size
risch \(-\frac {x}{2 a^{2}}-\frac {2 x b}{a^{3}}+\frac {{\mathrm e}^{2 d x +2 c}}{8 a^{2} d}-\frac {{\mathrm e}^{-2 d x -2 c}}{8 a^{2} d}-\frac {b \left (a \,{\mathrm e}^{2 d x +2 c}+2 b \,{\mathrm e}^{2 d x +2 c}+a \right )}{a^{3} d \left ({\mathrm e}^{4 d x +4 c} a +2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {3 \sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-a +2 \sqrt {b \left (a +b \right )}-2 b}{a}\right )}{4 \left (a +b \right ) d \,a^{2}}+\frac {\sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-a +2 \sqrt {b \left (a +b \right )}-2 b}{a}\right ) b}{\left (a +b \right ) d \,a^{3}}-\frac {3 \sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {b \left (a +b \right )}+2 b}{a}\right )}{4 \left (a +b \right ) d \,a^{2}}-\frac {\sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {b \left (a +b \right )}+2 b}{a}\right ) b}{\left (a +b \right ) d \,a^{3}}\) \(325\)
derivativedivides \(\frac {-\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (-a -4 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{3}}-\frac {4 b \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{4}-\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{4}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}+\frac {\left (3 a +4 b \right ) \left (\frac {\ln \left (-\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}-\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{4}\right )}{a^{3}}+\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (a +4 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{3}}}{d}\) \(327\)
default \(\frac {-\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (-a -4 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{3}}-\frac {4 b \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{4}-\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{4}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}+\frac {\left (3 a +4 b \right ) \left (\frac {\ln \left (-\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}-\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{4}\right )}{a^{3}}+\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {1}{2 a^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (a +4 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{3}}}{d}\) \(327\)

Input:

int(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2*x/a^2-2*x/a^3*b+1/8/a^2/d*exp(2*d*x+2*c)-1/8/a^2/d*exp(-2*d*x-2*c)-b* 
(a*exp(2*d*x+2*c)+2*b*exp(2*d*x+2*c)+a)/a^3/d/(exp(4*d*x+4*c)*a+2*a*exp(2* 
d*x+2*c)+4*b*exp(2*d*x+2*c)+a)+3/4*(b*(a+b))^(1/2)/(a+b)/d/a^2*ln(exp(2*d* 
x+2*c)-(-a+2*(b*(a+b))^(1/2)-2*b)/a)+(b*(a+b))^(1/2)/(a+b)/d/a^3*ln(exp(2* 
d*x+2*c)-(-a+2*(b*(a+b))^(1/2)-2*b)/a)*b-3/4*(b*(a+b))^(1/2)/(a+b)/d/a^2*l 
n(exp(2*d*x+2*c)+(a+2*(b*(a+b))^(1/2)+2*b)/a)-(b*(a+b))^(1/2)/(a+b)/d/a^3* 
ln(exp(2*d*x+2*c)+(a+2*(b*(a+b))^(1/2)+2*b)/a)*b
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1324 vs. \(2 (124) = 248\).

Time = 0.32 (sec) , antiderivative size = 2925, normalized size of antiderivative = 22.33 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

[1/8*(a^2*cosh(d*x + c)^8 + 8*a^2*cosh(d*x + c)*sinh(d*x + c)^7 + a^2*sinh 
(d*x + c)^8 - 2*(2*(a^2 + 4*a*b)*d*x - a^2 - 2*a*b)*cosh(d*x + c)^6 + 2*(1 
4*a^2*cosh(d*x + c)^2 - 2*(a^2 + 4*a*b)*d*x + a^2 + 2*a*b)*sinh(d*x + c)^6 
 + 4*(14*a^2*cosh(d*x + c)^3 - 3*(2*(a^2 + 4*a*b)*d*x - a^2 - 2*a*b)*cosh( 
d*x + c))*sinh(d*x + c)^5 - 8*((a^2 + 6*a*b + 8*b^2)*d*x + a*b + 2*b^2)*co 
sh(d*x + c)^4 + 2*(35*a^2*cosh(d*x + c)^4 - 4*(a^2 + 6*a*b + 8*b^2)*d*x - 
15*(2*(a^2 + 4*a*b)*d*x - a^2 - 2*a*b)*cosh(d*x + c)^2 - 4*a*b - 8*b^2)*si 
nh(d*x + c)^4 + 8*(7*a^2*cosh(d*x + c)^5 - 5*(2*(a^2 + 4*a*b)*d*x - a^2 - 
2*a*b)*cosh(d*x + c)^3 - 4*((a^2 + 6*a*b + 8*b^2)*d*x + a*b + 2*b^2)*cosh( 
d*x + c))*sinh(d*x + c)^3 - 2*(2*(a^2 + 4*a*b)*d*x + a^2 + 6*a*b)*cosh(d*x 
 + c)^2 + 2*(14*a^2*cosh(d*x + c)^6 - 15*(2*(a^2 + 4*a*b)*d*x - a^2 - 2*a* 
b)*cosh(d*x + c)^4 - 2*(a^2 + 4*a*b)*d*x - 24*((a^2 + 6*a*b + 8*b^2)*d*x + 
 a*b + 2*b^2)*cosh(d*x + c)^2 - a^2 - 6*a*b)*sinh(d*x + c)^2 + 2*((3*a^2 + 
 4*a*b)*cosh(d*x + c)^6 + 6*(3*a^2 + 4*a*b)*cosh(d*x + c)*sinh(d*x + c)^5 
+ (3*a^2 + 4*a*b)*sinh(d*x + c)^6 + 2*(3*a^2 + 10*a*b + 8*b^2)*cosh(d*x + 
c)^4 + (15*(3*a^2 + 4*a*b)*cosh(d*x + c)^2 + 6*a^2 + 20*a*b + 16*b^2)*sinh 
(d*x + c)^4 + 4*(5*(3*a^2 + 4*a*b)*cosh(d*x + c)^3 + 2*(3*a^2 + 10*a*b + 8 
*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 + (3*a^2 + 4*a*b)*cosh(d*x + c)^2 + ( 
15*(3*a^2 + 4*a*b)*cosh(d*x + c)^4 + 12*(3*a^2 + 10*a*b + 8*b^2)*cosh(d*x 
+ c)^2 + 3*a^2 + 4*a*b)*sinh(d*x + c)^2 + 2*(3*(3*a^2 + 4*a*b)*cosh(d*x...
 

Sympy [F]

\[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {\sinh ^{2}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sinh(d*x+c)**2/(a+b*sech(d*x+c)**2)**2,x)
 

Output:

Integral(sinh(c + d*x)**2/(a + b*sech(c + d*x)**2)**2, x)
                                                                                    
                                                                                    
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 696 vs. \(2 (124) = 248\).

Time = 0.17 (sec) , antiderivative size = 696, normalized size of antiderivative = 5.31 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

1/16*(3*a^2*b + 12*a*b^2 + 8*b^3)*log((a*e^(2*d*x + 2*c) + a + 2*b - 2*sqr 
t((a + b)*b))/(a*e^(2*d*x + 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/((a^4 + a 
^3*b)*sqrt((a + b)*b)*d) - 1/16*(3*a^2*b + 12*a*b^2 + 8*b^3)*log((a*e^(-2* 
d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 
2*sqrt((a + b)*b)))/((a^4 + a^3*b)*sqrt((a + b)*b)*d) - 1/8*(3*a*b + 2*b^2 
)*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2* 
c) + a + 2*b + 2*sqrt((a + b)*b)))/((a^3 + a^2*b)*sqrt((a + b)*b)*d) - 1/4 
*(a^2*b + 2*a*b^2 + (a^2*b + 8*a*b^2 + 8*b^3)*e^(2*d*x + 2*c))/((a^5 + a^4 
*b + (a^5 + a^4*b)*e^(4*d*x + 4*c) + 2*(a^5 + 3*a^4*b + 2*a^3*b^2)*e^(2*d* 
x + 2*c))*d) + 1/4*(a^2*b + 2*a*b^2 + (a^2*b + 8*a*b^2 + 8*b^3)*e^(-2*d*x 
- 2*c))/((a^5 + a^4*b + 2*(a^5 + 3*a^4*b + 2*a^3*b^2)*e^(-2*d*x - 2*c) + ( 
a^5 + a^4*b)*e^(-4*d*x - 4*c))*d) + 1/2*(a*b + (a*b + 2*b^2)*e^(-2*d*x - 2 
*c))/((a^4 + a^3*b + 2*(a^4 + 3*a^3*b + 2*a^2*b^2)*e^(-2*d*x - 2*c) + (a^4 
 + a^3*b)*e^(-4*d*x - 4*c))*d) - 1/2*(d*x + c)/(a^2*d) + 1/8*e^(2*d*x + 2* 
c)/(a^2*d) - 1/8*e^(-2*d*x - 2*c)/(a^2*d) - 1/2*b*log(a*e^(4*d*x + 4*c) + 
2*(a + 2*b)*e^(2*d*x + 2*c) + a)/(a^3*d) + 1/2*b*log(2*(a + 2*b)*e^(-2*d*x 
 - 2*c) + a*e^(-4*d*x - 4*c) + a)/(a^3*d)
 

Giac [A] (verification not implemented)

Time = 0.53 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.79 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=-\frac {\frac {12 \, {\left (d x + c\right )} {\left (a + 4 \, b\right )}}{a^{3}} - \frac {3 \, e^{\left (2 \, d x + 2 \, c\right )}}{a^{2}} - \frac {12 \, {\left (3 \, a b + 4 \, b^{2}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{\sqrt {-a b - b^{2}} a^{3}} - \frac {2 \, a^{2} e^{\left (6 \, d x + 6 \, c\right )} + 8 \, a b e^{\left (6 \, d x + 6 \, c\right )} + a^{2} e^{\left (4 \, d x + 4 \, c\right )} - 16 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 4 \, a^{2} e^{\left (2 \, d x + 2 \, c\right )} - 28 \, a b e^{\left (2 \, d x + 2 \, c\right )} - 3 \, a^{2}}{{\left (a e^{\left (6 \, d x + 6 \, c\right )} + 2 \, a e^{\left (4 \, d x + 4 \, c\right )} + 4 \, b e^{\left (4 \, d x + 4 \, c\right )} + a e^{\left (2 \, d x + 2 \, c\right )}\right )} a^{3}}}{24 \, d} \] Input:

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

-1/24*(12*(d*x + c)*(a + 4*b)/a^3 - 3*e^(2*d*x + 2*c)/a^2 - 12*(3*a*b + 4* 
b^2)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b 
 - b^2)*a^3) - (2*a^2*e^(6*d*x + 6*c) + 8*a*b*e^(6*d*x + 6*c) + a^2*e^(4*d 
*x + 4*c) - 16*b^2*e^(4*d*x + 4*c) - 4*a^2*e^(2*d*x + 2*c) - 28*a*b*e^(2*d 
*x + 2*c) - 3*a^2)/((a*e^(6*d*x + 6*c) + 2*a*e^(4*d*x + 4*c) + 4*b*e^(4*d* 
x + 4*c) + a*e^(2*d*x + 2*c))*a^3))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^4\,{\mathrm {sinh}\left (c+d\,x\right )}^2}{{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^2} \,d x \] Input:

int(sinh(c + d*x)^2/(a + b/cosh(c + d*x)^2)^2,x)
 

Output:

int((cosh(c + d*x)^4*sinh(c + d*x)^2)/(b + a*cosh(c + d*x)^2)^2, x)
 

Reduce [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 1431, normalized size of antiderivative = 10.92 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^2,x)
 

Output:

(6*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) 
- a - 2*b) + e**(c + d*x)*sqrt(a))*a**2 + 8*e**(6*c + 6*d*x)*sqrt(b)*sqrt( 
a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a) 
)*a*b + 6*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + 
 b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**2 + 8*e**(6*c + 6*d*x)*sqrt(b)*s 
qrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a 
))*a*b - 6*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) 
+ e**(2*c + 2*d*x)*a + a + 2*b)*a**2 - 8*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a + 
 b)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a*b + 12*e** 
(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 
2*b) + e**(c + d*x)*sqrt(a))*a**2 + 40*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b 
)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b 
 + 32*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + 
b) - a - 2*b) + e**(c + d*x)*sqrt(a))*b**2 + 12*e**(4*c + 4*d*x)*sqrt(b)*s 
qrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a 
))*a**2 + 40*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt( 
a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b + 32*e**(4*c + 4*d*x)*sqrt(b 
)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqr 
t(a))*b**2 - 12*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a 
+ b) + e**(2*c + 2*d*x)*a + a + 2*b)*a**2 - 40*e**(4*c + 4*d*x)*sqrt(b)...