\(\int \frac {\text {csch}^4(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [40]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 123 \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=-\frac {(3 a-2 b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 (a+b)^{7/2} d}+\frac {(a-b) \coth (c+d x)}{(a+b)^3 d}-\frac {\coth ^3(c+d x)}{3 (a+b)^2 d}-\frac {a b \tanh (c+d x)}{2 (a+b)^3 d \left (a+b-b \tanh ^2(c+d x)\right )} \] Output:

-1/2*(3*a-2*b)*b^(1/2)*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/(a+b)^(7/2 
)/d+(a-b)*coth(d*x+c)/(a+b)^3/d-1/3*coth(d*x+c)^3/(a+b)^2/d-1/2*a*b*tanh(d 
*x+c)/(a+b)^3/d/(a+b-b*tanh(d*x+c)^2)
                                                                                    
                                                                                    
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(295\) vs. \(2(123)=246\).

Time = 4.30 (sec) , antiderivative size = 295, normalized size of antiderivative = 2.40 \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {(a+2 b+a \cosh (2 (c+d x))) \text {sech}^4(c+d x) \left (-2 (a+b) (a+2 b+a \cosh (2 (c+d x))) \coth (c) \text {csch}^2(c+d x)-\frac {3 (3 a-2 b) b \text {arctanh}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (a+2 b+a \cosh (2 (c+d x))) (\cosh (2 c)-\sinh (2 c))}{\sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}-4 (a-2 b) (a+2 b+a \cosh (2 (c+d x))) \text {csch}(c) \text {csch}(c+d x) \sinh (d x)+2 (a+b) (a+2 b+a \cosh (2 (c+d x))) \text {csch}(c) \text {csch}^3(c+d x) \sinh (d x)-3 a b \text {sech}(2 c) \sinh (2 d x)+3 b (a+2 b) \tanh (2 c)\right )}{24 (a+b)^3 d \left (a+b \text {sech}^2(c+d x)\right )^2} \] Input:

Integrate[Csch[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^4*(-2*(a + b)*(a + 2*b + a* 
Cosh[2*(c + d*x)])*Coth[c]*Csch[c + d*x]^2 - (3*(3*a - 2*b)*b*ArcTanh[(Sec 
h[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Sinh[d*x] - a*Sinh[2*c + d*x]))/ 
(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(a + 2*b + a*Cosh[2*(c + d* 
x)])*(Cosh[2*c] - Sinh[2*c]))/(Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]) 
- 4*(a - 2*b)*(a + 2*b + a*Cosh[2*(c + d*x)])*Csch[c]*Csch[c + d*x]*Sinh[d 
*x] + 2*(a + b)*(a + 2*b + a*Cosh[2*(c + d*x)])*Csch[c]*Csch[c + d*x]^3*Si 
nh[d*x] - 3*a*b*Sech[2*c]*Sinh[2*d*x] + 3*b*(a + 2*b)*Tanh[2*c]))/(24*(a + 
 b)^3*d*(a + b*Sech[c + d*x]^2)^2)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4620, 361, 1584, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (i c+i d x)^4 \left (a+b \sec (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\coth ^4(c+d x) \left (1-\tanh ^2(c+d x)\right )}{\left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 361

\(\displaystyle \frac {\frac {1}{2} b \int \frac {\coth ^4(c+d x) \left (-\frac {a \tanh ^4(c+d x)}{(a+b)^3}-\frac {2 a \tanh ^2(c+d x)}{b (a+b)^2}+\frac {2}{b (a+b)}\right )}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)-\frac {a b \tanh (c+d x)}{2 (a+b)^3 \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 1584

\(\displaystyle \frac {\frac {1}{2} b \int \left (\frac {2 \coth ^4(c+d x)}{b (a+b)^2}-\frac {2 (a-b) \coth ^2(c+d x)}{b (a+b)^3}+\frac {2 b-3 a}{(a+b)^3 \left (-b \tanh ^2(c+d x)+a+b\right )}\right )d\tanh (c+d x)-\frac {a b \tanh (c+d x)}{2 (a+b)^3 \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {1}{2} b \left (-\frac {(3 a-2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{\sqrt {b} (a+b)^{7/2}}-\frac {2 \coth ^3(c+d x)}{3 b (a+b)^2}+\frac {2 (a-b) \coth (c+d x)}{b (a+b)^3}\right )-\frac {a b \tanh (c+d x)}{2 (a+b)^3 \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

Input:

Int[Csch[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]
 

Output:

((b*(-(((3*a - 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(Sqrt[b] 
*(a + b)^(7/2))) + (2*(a - b)*Coth[c + d*x])/(b*(a + b)^3) - (2*Coth[c + d 
*x]^3)/(3*b*(a + b)^2)))/2 - (a*b*Tanh[c + d*x])/(2*(a + b)^3*(a + b - b*T 
anh[c + d*x]^2)))/d
 

Defintions of rubi rules used

rule 361
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] : 
> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p 
+ 1))), x] + Simp[1/(2*b^(m/2 + 1)*(p + 1))   Int[x^m*(a + b*x^2)^(p + 1)*E 
xpandToSum[2*b*(p + 1)*Together[(b^(m/2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c 
- a*d)*x^(-m + 2))/(a + b*x^2)] - ((-a)^(m/2 - 1)*(b*c - a*d))/x^m, x], x], 
 x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && ILtQ[m/ 
2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])
 

rule 1584
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + ( 
c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q* 
(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && NeQ[ 
b^2 - 4*a*c, 0] && IGtQ[p, 0] && IGtQ[q, -2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(323\) vs. \(2(109)=218\).

Time = 13.42 (sec) , antiderivative size = 324, normalized size of antiderivative = 2.63

method result size
derivativedivides \(\frac {-\frac {\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{3}+\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-3 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+5 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right )}+\frac {2 b \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{2}-\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}+\frac {\left (3 a -2 b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{2}\right )}{\left (a +b \right )^{3}}-\frac {1}{24 \left (a +b \right )^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {-3 a +5 b}{8 \left (a +b \right )^{3} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}}{d}\) \(324\)
default \(\frac {-\frac {\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{3}+\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-3 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+5 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right )}+\frac {2 b \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{2}-\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}+\frac {\left (3 a -2 b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{2}\right )}{\left (a +b \right )^{3}}-\frac {1}{24 \left (a +b \right )^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {-3 a +5 b}{8 \left (a +b \right )^{3} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}}{d}\) \(324\)
risch \(-\frac {9 a b \,{\mathrm e}^{8 d x +8 c}-6 b^{2} {\mathrm e}^{8 d x +8 c}+12 a^{2} {\mathrm e}^{6 d x +6 c}+18 a b \,{\mathrm e}^{6 d x +6 c}+66 b^{2} {\mathrm e}^{6 d x +6 c}+20 a^{2} {\mathrm e}^{4 d x +4 c}+44 a b \,{\mathrm e}^{4 d x +4 c}-66 b^{2} {\mathrm e}^{4 d x +4 c}+4 a^{2} {\mathrm e}^{2 d x +2 c}-18 a b \,{\mathrm e}^{2 d x +2 c}+38 b^{2} {\mathrm e}^{2 d x +2 c}-4 a^{2}+11 a b}{3 d \left (a +b \right )^{3} \left ({\mathrm e}^{2 d x +2 c}-1\right )^{3} \left ({\mathrm e}^{4 d x +4 c} a +2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {3 \sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {b \left (a +b \right )}+2 b}{a}\right ) a}{4 \left (a +b \right )^{4} d}-\frac {\sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {b \left (a +b \right )}+2 b}{a}\right ) b}{2 \left (a +b \right )^{4} d}-\frac {3 \sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-a +2 \sqrt {b \left (a +b \right )}-2 b}{a}\right ) a}{4 \left (a +b \right )^{4} d}+\frac {\sqrt {b \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-a +2 \sqrt {b \left (a +b \right )}-2 b}{a}\right ) b}{2 \left (a +b \right )^{4} d}\) \(418\)

Input:

int(csch(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-1/8/(a^2+2*a*b+b^2)/(a+b)*(1/3*tanh(1/2*d*x+1/2*c)^3*a+1/3*b*tanh(1/ 
2*d*x+1/2*c)^3-3*a*tanh(1/2*d*x+1/2*c)+5*b*tanh(1/2*d*x+1/2*c))+2*b/(a+b)^ 
3*((-1/2*tanh(1/2*d*x+1/2*c)^3*a-1/2*a*tanh(1/2*d*x+1/2*c))/(tanh(1/2*d*x+ 
1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2*d* 
x+1/2*c)^2*b+a+b)+1/2*(3*a-2*b)*(-1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*t 
anh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1/4/b^(1/2 
)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b 
^(1/2)+(a+b)^(1/2))))-1/24/(a+b)^2/tanh(1/2*d*x+1/2*c)^3-1/8/(a+b)^3*(-3*a 
+5*b)/tanh(1/2*d*x+1/2*c))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2933 vs. \(2 (112) = 224\).

Time = 0.54 (sec) , antiderivative size = 6143, normalized size of antiderivative = 49.94 \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(csch(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {csch}^{4}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(csch(d*x+c)**4/(a+b*sech(d*x+c)**2)**2,x)
 

Output:

Integral(csch(c + d*x)**4/(a + b*sech(c + d*x)**2)**2, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 430 vs. \(2 (112) = 224\).

Time = 0.20 (sec) , antiderivative size = 430, normalized size of antiderivative = 3.50 \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {{\left (3 \, a b - 2 \, b^{2}\right )} \log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{4 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {{\left (a + b\right )} b} d} + \frac {4 \, a^{2} - 11 \, a b - 2 \, {\left (2 \, a^{2} - 9 \, a b + 19 \, b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} - 2 \, {\left (10 \, a^{2} + 22 \, a b - 33 \, b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} - 6 \, {\left (2 \, a^{2} + 3 \, a b + 11 \, b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )} - 3 \, {\left (3 \, a b - 2 \, b^{2}\right )} e^{\left (-8 \, d x - 8 \, c\right )}}{3 \, {\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3} - {\left (a^{4} - a^{3} b - 9 \, a^{2} b^{2} - 11 \, a b^{3} - 4 \, b^{4}\right )} e^{\left (-2 \, d x - 2 \, c\right )} - 2 \, {\left (a^{4} + 9 \, a^{3} b + 21 \, a^{2} b^{2} + 19 \, a b^{3} + 6 \, b^{4}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 2 \, {\left (a^{4} + 9 \, a^{3} b + 21 \, a^{2} b^{2} + 19 \, a b^{3} + 6 \, b^{4}\right )} e^{\left (-6 \, d x - 6 \, c\right )} + {\left (a^{4} - a^{3} b - 9 \, a^{2} b^{2} - 11 \, a b^{3} - 4 \, b^{4}\right )} e^{\left (-8 \, d x - 8 \, c\right )} - {\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3}\right )} e^{\left (-10 \, d x - 10 \, c\right )}\right )} d} \] Input:

integrate(csch(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

1/4*(3*a*b - 2*b^2)*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b)) 
/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/((a^3 + 3*a^2*b + 3*a 
*b^2 + b^3)*sqrt((a + b)*b)*d) + 1/3*(4*a^2 - 11*a*b - 2*(2*a^2 - 9*a*b + 
19*b^2)*e^(-2*d*x - 2*c) - 2*(10*a^2 + 22*a*b - 33*b^2)*e^(-4*d*x - 4*c) - 
 6*(2*a^2 + 3*a*b + 11*b^2)*e^(-6*d*x - 6*c) - 3*(3*a*b - 2*b^2)*e^(-8*d*x 
 - 8*c))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3 - (a^4 - a^3*b - 9*a^2*b^2 - 
11*a*b^3 - 4*b^4)*e^(-2*d*x - 2*c) - 2*(a^4 + 9*a^3*b + 21*a^2*b^2 + 19*a* 
b^3 + 6*b^4)*e^(-4*d*x - 4*c) + 2*(a^4 + 9*a^3*b + 21*a^2*b^2 + 19*a*b^3 + 
 6*b^4)*e^(-6*d*x - 6*c) + (a^4 - a^3*b - 9*a^2*b^2 - 11*a*b^3 - 4*b^4)*e^ 
(-8*d*x - 8*c) - (a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*e^(-10*d*x - 10*c))*d 
)
                                                                                    
                                                                                    
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 253 vs. \(2 (112) = 224\).

Time = 0.28 (sec) , antiderivative size = 253, normalized size of antiderivative = 2.06 \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=-\frac {\frac {3 \, {\left (3 \, a b - 2 \, b^{2}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {-a b - b^{2}}} - \frac {6 \, {\left (a b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + a b\right )}}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}} + \frac {8 \, {\left (3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} - 3 \, b e^{\left (2 \, d x + 2 \, c\right )} - a + 2 \, b\right )}}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}^{3}}}{6 \, d} \] Input:

integrate(csch(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

-1/6*(3*(3*a*b - 2*b^2)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b 
 - b^2))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sqrt(-a*b - b^2)) - 6*(a*b*e^(2* 
d*x + 2*c) + 2*b^2*e^(2*d*x + 2*c) + a*b)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3) 
*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) + a)) + 8* 
(3*b*e^(4*d*x + 4*c) + 3*a*e^(2*d*x + 2*c) - 3*b*e^(2*d*x + 2*c) - a + 2*b 
)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*(e^(2*d*x + 2*c) - 1)^3))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^4}{{\mathrm {sinh}\left (c+d\,x\right )}^4\,{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^2} \,d x \] Input:

int(1/(sinh(c + d*x)^4*(a + b/cosh(c + d*x)^2)^2),x)
 

Output:

int(cosh(c + d*x)^4/(sinh(c + d*x)^4*(b + a*cosh(c + d*x)^2)^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.50 (sec) , antiderivative size = 4086, normalized size of antiderivative = 33.22 \[ \int \frac {\text {csch}^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(csch(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x)
 

Output:

( - 9*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a 
+ b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**3 + 42*e**(10*c + 10*d*x)*sqrt( 
b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x) 
*sqrt(a))*a**2*b - 24*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2 
*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b**2 - 9*e**(10* 
c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) 
+ e**(c + d*x)*sqrt(a))*a**3 + 42*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*l 
og(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**2*b - 
24*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - 
 a - 2*b) + e**(c + d*x)*sqrt(a))*a*b**2 + 9*e**(10*c + 10*d*x)*sqrt(b)*sq 
rt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a**3 - 
 42*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e** 
(2*c + 2*d*x)*a + a + 2*b)*a**2*b + 24*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + 
 b)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a*b**2 + 9*e 
**(8*c + 8*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a 
- 2*b) + e**(c + d*x)*sqrt(a))*a**3 - 78*e**(8*c + 8*d*x)*sqrt(b)*sqrt(a + 
 b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a 
**2*b + 192*e**(8*c + 8*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqr 
t(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a*b**2 - 96*e**(8*c + 8*d*x)*s 
qrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c...