\(\int \frac {\sinh ^2(c+d x)}{(a+b \text {sech}^2(c+d x))^3} \, dx\) [43]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 187 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=-\frac {(a+6 b) x}{2 a^4}+\frac {\sqrt {b} \left (15 a^2+40 a b+24 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{8 a^4 (a+b)^{3/2} d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 a d \left (a+b-b \tanh ^2(c+d x)\right )^2}+\frac {3 b \tanh (c+d x)}{4 a^2 d \left (a+b-b \tanh ^2(c+d x)\right )^2}+\frac {b (11 a+12 b) \tanh (c+d x)}{8 a^3 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )} \] Output:

-1/2*(a+6*b)*x/a^4+1/8*b^(1/2)*(15*a^2+40*a*b+24*b^2)*arctanh(b^(1/2)*tanh 
(d*x+c)/(a+b)^(1/2))/a^4/(a+b)^(3/2)/d+1/2*cosh(d*x+c)*sinh(d*x+c)/a/d/(a+ 
b-b*tanh(d*x+c)^2)^2+3/4*b*tanh(d*x+c)/a^2/d/(a+b-b*tanh(d*x+c)^2)^2+1/8*b 
*(11*a+12*b)*tanh(d*x+c)/a^3/(a+b)/d/(a+b-b*tanh(d*x+c)^2)
                                                                                    
                                                                                    
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2361\) vs. \(2(187)=374\).

Time = 15.11 (sec) , antiderivative size = 2361, normalized size of antiderivative = 12.63 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Result too large to show} \] Input:

Integrate[Sinh[c + d*x]^2/(a + b*Sech[c + d*x]^2)^3,x]
 

Output:

((a + 2*b + a*Cosh[2*(c + d*x)])^3*Sech[c + d*x]^6*((24*a*(a + 2*b)*ArcTan 
h[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a + b)^(5/2) - (10*(3*a^2 + 8*a*b 
 + 8*b^2)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a + b)^(5/2) + (1 
0*a*Sqrt[b]*(3*a^2 + 16*a*b + 16*b^2 + 3*a*(a + 2*b)*Cosh[2*(c + d*x)])*Si 
nh[2*(c + d*x)])/((a + b)^2*(a + 2*b + a*Cosh[2*(c + d*x)])^2) - (8*Sqrt[b 
]*(3*a^3 + 14*a^2*b + 24*a*b^2 + 16*b^3 + a*(3*a^2 + 4*a*b + 4*b^2)*Cosh[2 
*(c + d*x)])*Sinh[2*(c + d*x)])/((a + b)^2*(a + 2*b + a*Cosh[2*(c + d*x)]) 
^2) + (4*Sqrt[b]*((-2*(3*a^5 - 10*a^4*b + 80*a^3*b^2 + 480*a^2*b^3 + 640*a 
*b^4 + 256*b^5)*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Sinh 
[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])] 
*(Cosh[2*c] - Sinh[2*c]))/(Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + (S 
ech[2*c]*(256*b^2*(a + b)^2*(3*a^2 + 8*a*b + 8*b^2)*d*x*Cosh[2*c] + 512*a* 
b^2*(a + b)^2*(a + 2*b)*d*x*Cosh[2*d*x] + 128*a^4*b^2*d*x*Cosh[2*(c + 2*d* 
x)] + 256*a^3*b^3*d*x*Cosh[2*(c + 2*d*x)] + 128*a^2*b^4*d*x*Cosh[2*(c + 2* 
d*x)] + 512*a^4*b^2*d*x*Cosh[4*c + 2*d*x] + 2048*a^3*b^3*d*x*Cosh[4*c + 2* 
d*x] + 2560*a^2*b^4*d*x*Cosh[4*c + 2*d*x] + 1024*a*b^5*d*x*Cosh[4*c + 2*d* 
x] + 128*a^4*b^2*d*x*Cosh[6*c + 4*d*x] + 256*a^3*b^3*d*x*Cosh[6*c + 4*d*x] 
 + 128*a^2*b^4*d*x*Cosh[6*c + 4*d*x] - 9*a^6*Sinh[2*c] + 12*a^5*b*Sinh[2*c 
] + 684*a^4*b^2*Sinh[2*c] + 2880*a^3*b^3*Sinh[2*c] + 5280*a^2*b^4*Sinh[2*c 
] + 4608*a*b^5*Sinh[2*c] + 1536*b^6*Sinh[2*c] + 9*a^6*Sinh[2*d*x] - 14*...
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.18, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 25, 4620, 373, 402, 27, 402, 25, 397, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\sin (i c+i d x)^2}{\left (a+b \sec (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\sin (i c+i d x)^2}{\left (b \sec (i c+i d x)^2+a\right )^3}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right )^2 \left (-b \tanh ^2(c+d x)+a+b\right )^3}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\int \frac {5 b \tanh ^2(c+d x)+a+b}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )^3}d\tanh (c+d x)}{2 a}}{d}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {-\frac {\int -\frac {2 (a+b) \left (9 b \tanh ^2(c+d x)+2 a+3 b\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{4 a (a+b)}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\frac {\int \frac {9 b \tanh ^2(c+d x)+2 a+3 b}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{2 a}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\frac {-\frac {\int -\frac {4 a^2+17 b a+12 b^2+b (11 a+12 b) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{2 a (a+b)}-\frac {b (11 a+12 b) \tanh (c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\frac {\frac {\int \frac {4 a^2+17 b a+12 b^2+b (11 a+12 b) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{2 a (a+b)}-\frac {b (11 a+12 b) \tanh (c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\frac {\frac {\frac {4 (a+b) (a+6 b) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a}-\frac {b \left (15 a^2+40 a b+24 b^2\right ) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{a}}{2 a (a+b)}-\frac {b (11 a+12 b) \tanh (c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\frac {\frac {\frac {4 (a+b) (a+6 b) \text {arctanh}(\tanh (c+d x))}{a}-\frac {b \left (15 a^2+40 a b+24 b^2\right ) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{a}}{2 a (a+b)}-\frac {b (11 a+12 b) \tanh (c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\tanh (c+d x)}{2 a \left (1-\tanh ^2(c+d x)\right ) \left (a-b \tanh ^2(c+d x)+b\right )^2}-\frac {\frac {\frac {\frac {4 (a+b) (a+6 b) \text {arctanh}(\tanh (c+d x))}{a}-\frac {\sqrt {b} \left (15 a^2+40 a b+24 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{a \sqrt {a+b}}}{2 a (a+b)}-\frac {b (11 a+12 b) \tanh (c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{2 a}-\frac {3 b \tanh (c+d x)}{2 a \left (a-b \tanh ^2(c+d x)+b\right )^2}}{2 a}}{d}\)

Input:

Int[Sinh[c + d*x]^2/(a + b*Sech[c + d*x]^2)^3,x]
 

Output:

(Tanh[c + d*x]/(2*a*(1 - Tanh[c + d*x]^2)*(a + b - b*Tanh[c + d*x]^2)^2) - 
 ((-3*b*Tanh[c + d*x])/(2*a*(a + b - b*Tanh[c + d*x]^2)^2) + (((4*(a + b)* 
(a + 6*b)*ArcTanh[Tanh[c + d*x]])/a - (Sqrt[b]*(15*a^2 + 40*a*b + 24*b^2)* 
ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a*Sqrt[a + b]))/(2*a*(a + b 
)) - (b*(11*a + 12*b)*Tanh[c + d*x])/(2*a*(a + b)*(a + b - b*Tanh[c + d*x] 
^2)))/(2*a))/(2*a))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1319\) vs. \(2(169)=338\).

Time = 0.22 (sec) , antiderivative size = 1320, normalized size of antiderivative = 7.06

\[\text {Expression too large to display}\]

Input:

int(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x)
 

Output:

-1/2/d/a^3/(tanh(1/2*d*x+1/2*c)+1)^2+1/2/d/a^3/(tanh(1/2*d*x+1/2*c)+1)-1/2 
/d/a^3*ln(tanh(1/2*d*x+1/2*c)+1)-3/d/a^4*ln(tanh(1/2*d*x+1/2*c)+1)*b+1/2/d 
/a^3/(tanh(1/2*d*x+1/2*c)-1)^2+1/2/d/a^3/(tanh(1/2*d*x+1/2*c)-1)+1/2/d/a^3 
*ln(tanh(1/2*d*x+1/2*c)-1)+3/d/a^4*ln(tanh(1/2*d*x+1/2*c)-1)*b+9/4/d*b/a^2 
/(tanh(1/2*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2* 
a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)^2*tanh(1/2*d*x+1/2*c)^7+2/d*b^2/a^3/(tanh 
(1/2*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*ta 
nh(1/2*d*x+1/2*c)^2*b+a+b)^2*tanh(1/2*d*x+1/2*c)^7+27/4/d*b/a/(tanh(1/2*d* 
x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2* 
d*x+1/2*c)^2*b+a+b)^2/(a+b)*tanh(1/2*d*x+1/2*c)^5+23/4/d*b^2/a^2/(tanh(1/2 
*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1 
/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tanh(1/2*d*x+1/2*c)^5-2/d*b^3/a^3/(tanh(1/2 
*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1 
/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tanh(1/2*d*x+1/2*c)^5+27/4/d*b/a/(tanh(1/2* 
d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/ 
2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tanh(1/2*d*x+1/2*c)^3+23/4/d*b^2/a^2/(tanh(1 
/2*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh 
(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tanh(1/2*d*x+1/2*c)^3-2/d*b^3/a^3/(tanh(1 
/2*d*x+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh 
(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tanh(1/2*d*x+1/2*c)^3+9/4/d*b/a^2/(tan...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4724 vs. \(2 (178) = 356\).

Time = 0.46 (sec) , antiderivative size = 9730, normalized size of antiderivative = 52.03 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Timed out} \] Input:

integrate(sinh(d*x+c)**2/(a+b*sech(d*x+c)**2)**3,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1373 vs. \(2 (178) = 356\).

Time = 0.20 (sec) , antiderivative size = 1373, normalized size of antiderivative = 7.34 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")
 

Output:

3/64*(5*a^3*b + 30*a^2*b^2 + 40*a*b^3 + 16*b^4)*log((a*e^(2*d*x + 2*c) + a 
 + 2*b - 2*sqrt((a + b)*b))/(a*e^(2*d*x + 2*c) + a + 2*b + 2*sqrt((a + b)* 
b)))/((a^6 + 2*a^5*b + a^4*b^2)*sqrt((a + b)*b)*d) - 3/64*(5*a^3*b + 30*a^ 
2*b^2 + 40*a*b^3 + 16*b^4)*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + 
 b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/((a^6 + 2*a^5* 
b + a^4*b^2)*sqrt((a + b)*b)*d) - 1/32*(15*a^2*b + 20*a*b^2 + 8*b^3)*log(( 
a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a 
+ 2*b + 2*sqrt((a + b)*b)))/((a^5 + 2*a^4*b + a^3*b^2)*sqrt((a + b)*b)*d) 
- 1/16*(9*a^4*b + 32*a^3*b^2 + 20*a^2*b^3 + 3*(3*a^4*b + 34*a^3*b^2 + 64*a 
^2*b^3 + 32*a*b^4)*e^(6*d*x + 6*c) + (27*a^4*b + 264*a^3*b^2 + 740*a^2*b^3 
 + 832*a*b^4 + 320*b^5)*e^(4*d*x + 4*c) + (27*a^4*b + 194*a^3*b^2 + 336*a^ 
2*b^3 + 160*a*b^4)*e^(2*d*x + 2*c))/((a^8 + 2*a^7*b + a^6*b^2 + (a^8 + 2*a 
^7*b + a^6*b^2)*e^(8*d*x + 8*c) + 4*(a^8 + 4*a^7*b + 5*a^6*b^2 + 2*a^5*b^3 
)*e^(6*d*x + 6*c) + 2*(3*a^8 + 14*a^7*b + 27*a^6*b^2 + 24*a^5*b^3 + 8*a^4* 
b^4)*e^(4*d*x + 4*c) + 4*(a^8 + 4*a^7*b + 5*a^6*b^2 + 2*a^5*b^3)*e^(2*d*x 
+ 2*c))*d) + 1/16*(9*a^4*b + 32*a^3*b^2 + 20*a^2*b^3 + (27*a^4*b + 194*a^3 
*b^2 + 336*a^2*b^3 + 160*a*b^4)*e^(-2*d*x - 2*c) + (27*a^4*b + 264*a^3*b^2 
 + 740*a^2*b^3 + 832*a*b^4 + 320*b^5)*e^(-4*d*x - 4*c) + 3*(3*a^4*b + 34*a 
^3*b^2 + 64*a^2*b^3 + 32*a*b^4)*e^(-6*d*x - 6*c))/((a^8 + 2*a^7*b + a^6*b^ 
2 + 4*(a^8 + 4*a^7*b + 5*a^6*b^2 + 2*a^5*b^3)*e^(-2*d*x - 2*c) + 2*(3*a...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 370 vs. \(2 (178) = 356\).

Time = 0.61 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.98 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\frac {\frac {{\left (15 \, a^{2} b + 40 \, a b^{2} + 24 \, b^{3}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{{\left (a^{5} + a^{4} b\right )} \sqrt {-a b - b^{2}}} - \frac {2 \, {\left (9 \, a^{3} b e^{\left (6 \, d x + 6 \, c\right )} + 32 \, a^{2} b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 24 \, a b^{3} e^{\left (6 \, d x + 6 \, c\right )} + 27 \, a^{3} b e^{\left (4 \, d x + 4 \, c\right )} + 102 \, a^{2} b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 152 \, a b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 80 \, b^{4} e^{\left (4 \, d x + 4 \, c\right )} + 27 \, a^{3} b e^{\left (2 \, d x + 2 \, c\right )} + 80 \, a^{2} b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 56 \, a b^{3} e^{\left (2 \, d x + 2 \, c\right )} + 9 \, a^{3} b + 10 \, a^{2} b^{2}\right )}}{{\left (a^{5} + a^{4} b\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}^{2}} - \frac {4 \, {\left (d x + c\right )} {\left (a + 6 \, b\right )}}{a^{4}} + \frac {e^{\left (2 \, d x + 2 \, c\right )}}{a^{3}} + \frac {{\left (2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 12 \, b e^{\left (2 \, d x + 2 \, c\right )} - a\right )} e^{\left (-2 \, d x - 2 \, c\right )}}{a^{4}}}{8 \, d} \] Input:

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")
 

Output:

1/8*((15*a^2*b + 40*a*b^2 + 24*b^3)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2* 
b)/sqrt(-a*b - b^2))/((a^5 + a^4*b)*sqrt(-a*b - b^2)) - 2*(9*a^3*b*e^(6*d* 
x + 6*c) + 32*a^2*b^2*e^(6*d*x + 6*c) + 24*a*b^3*e^(6*d*x + 6*c) + 27*a^3* 
b*e^(4*d*x + 4*c) + 102*a^2*b^2*e^(4*d*x + 4*c) + 152*a*b^3*e^(4*d*x + 4*c 
) + 80*b^4*e^(4*d*x + 4*c) + 27*a^3*b*e^(2*d*x + 2*c) + 80*a^2*b^2*e^(2*d* 
x + 2*c) + 56*a*b^3*e^(2*d*x + 2*c) + 9*a^3*b + 10*a^2*b^2)/((a^5 + a^4*b) 
*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) + a)^2) - 
4*(d*x + c)*(a + 6*b)/a^4 + e^(2*d*x + 2*c)/a^3 + (2*a*e^(2*d*x + 2*c) + 1 
2*b*e^(2*d*x + 2*c) - a)*e^(-2*d*x - 2*c)/a^4)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^6\,{\mathrm {sinh}\left (c+d\,x\right )}^2}{{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^3} \,d x \] Input:

int(sinh(c + d*x)^2/(a + b/cosh(c + d*x)^2)^3,x)
 

Output:

int((cosh(c + d*x)^6*sinh(c + d*x)^2)/(b + a*cosh(c + d*x)^2)^3, x)
 

Reduce [B] (verification not implemented)

Time = 0.50 (sec) , antiderivative size = 5048, normalized size of antiderivative = 26.99 \[ \int \frac {\sinh ^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx =\text {Too large to display} \] Input:

int(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x)
 

Output:

(30*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + 
b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**5 + 140*e**(10*c + 10*d*x)*sqrt(b 
)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)* 
sqrt(a))*a**4*b + 208*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2 
*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**3*b**2 + 96*e** 
(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a 
- 2*b) + e**(c + d*x)*sqrt(a))*a**2*b**3 + 30*e**(10*c + 10*d*x)*sqrt(b)*s 
qrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a 
))*a**5 + 140*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sq 
rt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**4*b + 208*e**(10*c + 10*d* 
x)*sqrt(b)*sqrt(a + b)*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + 
 d*x)*sqrt(a))*a**3*b**2 + 96*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(s 
qrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + e**(c + d*x)*sqrt(a))*a**2*b**3 - 3 
0*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**(2 
*c + 2*d*x)*a + a + 2*b)*a**5 - 140*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b) 
*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a**4*b - 208*e* 
*(10*c + 10*d*x)*sqrt(b)*sqrt(a + b)*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 
 2*d*x)*a + a + 2*b)*a**3*b**2 - 96*e**(10*c + 10*d*x)*sqrt(b)*sqrt(a + b) 
*log(2*sqrt(b)*sqrt(a + b) + e**(2*c + 2*d*x)*a + a + 2*b)*a**2*b**3 + 120 
*e**(8*c + 8*d*x)*sqrt(b)*sqrt(a + b)*log( - sqrt(2*sqrt(b)*sqrt(a + b)...