\(\int \text {sech}(c+d x) (a+b \text {sech}^2(c+d x))^3 \, dx\) [69]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 125 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\frac {(2 a+b) \left (8 a^2+8 a b+5 b^2\right ) \arctan (\sinh (c+d x))}{16 d}+\frac {b \left (24 a^2+18 a b+5 b^2\right ) \text {sech}(c+d x) \tanh (c+d x)}{16 d}+\frac {b^2 (18 a+5 b) \text {sech}^3(c+d x) \tanh (c+d x)}{24 d}+\frac {b^3 \text {sech}^5(c+d x) \tanh (c+d x)}{6 d} \] Output:

1/16*(2*a+b)*(8*a^2+8*a*b+5*b^2)*arctan(sinh(d*x+c))/d+1/16*b*(24*a^2+18*a 
*b+5*b^2)*sech(d*x+c)*tanh(d*x+c)/d+1/24*b^2*(18*a+5*b)*sech(d*x+c)^3*tanh 
(d*x+c)/d+1/6*b^3*sech(d*x+c)^5*tanh(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 9.27 (sec) , antiderivative size = 1430, normalized size of antiderivative = 11.44 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx =\text {Too large to display} \] Input:

Integrate[Sech[c + d*x]*(a + b*Sech[c + d*x]^2)^3,x]
 

Output:

(Coth[c + d*x]^6*Csch[c + d*x]*(a + b*Sech[c + d*x]^2)^3*(117228825*(a + b 
)^3*Sinh[c + d*x]^2 + 274542345*a*(a + b)^2*Sinh[c + d*x]^4 + 70189350*(a 
+ b)^3*Sinh[c + d*x]^4 + 215549775*a^2*(a + b)*Sinh[c + d*x]^6 + 168951510 
*a*(a + b)^2*Sinh[c + d*x]^6 + 4093425*(a + b)^3*Sinh[c + d*x]^6 + 5800945 
5*a^3*Sinh[c + d*x]^8 + 135323370*a^2*(a + b)*Sinh[c + d*x]^8 + 9514449*a* 
(a + b)^2*Sinh[c + d*x]^8 + 36772890*a^3*Sinh[c + d*x]^10 + 7808535*a^2*(a 
 + b)*Sinh[c + d*x]^10 - 75520*(a + b)^3*HypergeometricPFQ[{3/2, 2, 2, 2, 
2}, {1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^10 - 13824*(a + b)^3* 
HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -Sinh[c + d*x] 
^2]*Sinh[c + d*x]^10 - 1024*(a + b)^3*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 
2, 2}, {1, 1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^10 + 2160711 
*a^3*Sinh[c + d*x]^12 - 189696*a*(a + b)^2*HypergeometricPFQ[{3/2, 2, 2, 2 
, 2}, {1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^12 - 38400*a*(a + b 
)^2*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -Sinh[c + 
d*x]^2]*Sinh[c + d*x]^12 - 3072*a*(a + b)^2*HypergeometricPFQ[{3/2, 2, 2, 
2, 2, 2, 2}, {1, 1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^12 - 1 
58976*a^2*(a + b)*HypergeometricPFQ[{3/2, 2, 2, 2, 2}, {1, 1, 1, 11/2}, -S 
inh[c + d*x]^2]*Sinh[c + d*x]^14 - 35328*a^2*(a + b)*HypergeometricPFQ[{3/ 
2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^14 
- 3072*a^2*(a + b)*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2, 2}, {1, 1, 1,...
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.30, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4635, 315, 401, 25, 298, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sec (i c+i d x) \left (a+b \sec (i c+i d x)^2\right )^3dx\)

\(\Big \downarrow \) 4635

\(\displaystyle \frac {\int \frac {\left (a \sinh ^2(c+d x)+a+b\right )^3}{\left (\sinh ^2(c+d x)+1\right )^4}d\sinh (c+d x)}{d}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\frac {1}{6} \int \frac {\left (a \sinh ^2(c+d x)+a+b\right ) \left (a (6 a+b) \sinh ^2(c+d x)+(a+b) (6 a+5 b)\right )}{\left (\sinh ^2(c+d x)+1\right )^3}d\sinh (c+d x)+\frac {b \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )^2}{6 \left (\sinh ^2(c+d x)+1\right )^3}}{d}\)

\(\Big \downarrow \) 401

\(\displaystyle \frac {\frac {1}{6} \left (\frac {5 b (2 a+b) \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )}{4 \left (\sinh ^2(c+d x)+1\right )^2}-\frac {1}{4} \int -\frac {a \left (24 a^2+14 b a+5 b^2\right ) \sinh ^2(c+d x)+(a+b) \left (24 a^2+34 b a+15 b^2\right )}{\left (\sinh ^2(c+d x)+1\right )^2}d\sinh (c+d x)\right )+\frac {b \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )^2}{6 \left (\sinh ^2(c+d x)+1\right )^3}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{6} \left (\frac {1}{4} \int \frac {a \left (24 a^2+14 b a+5 b^2\right ) \sinh ^2(c+d x)+(a+b) \left (24 a^2+34 b a+15 b^2\right )}{\left (\sinh ^2(c+d x)+1\right )^2}d\sinh (c+d x)+\frac {5 b (2 a+b) \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )}{4 \left (\sinh ^2(c+d x)+1\right )^2}\right )+\frac {b \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )^2}{6 \left (\sinh ^2(c+d x)+1\right )^3}}{d}\)

\(\Big \downarrow \) 298

\(\displaystyle \frac {\frac {1}{6} \left (\frac {1}{4} \left (\frac {3}{2} (2 a+b) \left (8 a^2+8 a b+5 b^2\right ) \int \frac {1}{\sinh ^2(c+d x)+1}d\sinh (c+d x)+\frac {b \left (44 a^2+44 a b+15 b^2\right ) \sinh (c+d x)}{2 \left (\sinh ^2(c+d x)+1\right )}\right )+\frac {5 b (2 a+b) \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )}{4 \left (\sinh ^2(c+d x)+1\right )^2}\right )+\frac {b \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )^2}{6 \left (\sinh ^2(c+d x)+1\right )^3}}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{6} \left (\frac {1}{4} \left (\frac {3}{2} (2 a+b) \left (8 a^2+8 a b+5 b^2\right ) \arctan (\sinh (c+d x))+\frac {b \left (44 a^2+44 a b+15 b^2\right ) \sinh (c+d x)}{2 \left (\sinh ^2(c+d x)+1\right )}\right )+\frac {5 b (2 a+b) \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )}{4 \left (\sinh ^2(c+d x)+1\right )^2}\right )+\frac {b \sinh (c+d x) \left (a \sinh ^2(c+d x)+a+b\right )^2}{6 \left (\sinh ^2(c+d x)+1\right )^3}}{d}\)

Input:

Int[Sech[c + d*x]*(a + b*Sech[c + d*x]^2)^3,x]
 

Output:

((b*Sinh[c + d*x]*(a + b + a*Sinh[c + d*x]^2)^2)/(6*(1 + Sinh[c + d*x]^2)^ 
3) + ((5*b*(2*a + b)*Sinh[c + d*x]*(a + b + a*Sinh[c + d*x]^2))/(4*(1 + Si 
nh[c + d*x]^2)^2) + ((3*(2*a + b)*(8*a^2 + 8*a*b + 5*b^2)*ArcTan[Sinh[c + 
d*x]])/2 + (b*(44*a^2 + 44*a*b + 15*b^2)*Sinh[c + d*x])/(2*(1 + Sinh[c + d 
*x]^2)))/4)/6)/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 298
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-( 
b*c - a*d))*x*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[(a*d - b*c*( 
2*p + 3))/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, 
 c, d, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/2 + p, 0])
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 401
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
q/(a*b*2*(p + 1))), x] + Simp[1/(a*b*2*(p + 1))   Int[(a + b*x^2)^(p + 1)*( 
c + d*x^2)^(q - 1)*Simp[c*(b*e*2*(p + 1) + b*e - a*f) + d*(b*e*2*(p + 1) + 
(b*e - a*f)*(2*q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && L 
tQ[p, -1] && GtQ[q, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4635
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f 
 Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)^((m 
+ n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && In 
tegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p]
 
Maple [A] (verified)

Time = 2.14 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.10

method result size
derivativedivides \(\frac {2 a^{3} \arctan \left ({\mathrm e}^{d x +c}\right )+3 a^{2} b \left (\frac {\operatorname {sech}\left (d x +c \right ) \tanh \left (d x +c \right )}{2}+\arctan \left ({\mathrm e}^{d x +c}\right )\right )+3 a \,b^{2} \left (\left (\frac {\operatorname {sech}\left (d x +c \right )^{3}}{4}+\frac {3 \,\operatorname {sech}\left (d x +c \right )}{8}\right ) \tanh \left (d x +c \right )+\frac {3 \arctan \left ({\mathrm e}^{d x +c}\right )}{4}\right )+b^{3} \left (\left (\frac {\operatorname {sech}\left (d x +c \right )^{5}}{6}+\frac {5 \operatorname {sech}\left (d x +c \right )^{3}}{24}+\frac {5 \,\operatorname {sech}\left (d x +c \right )}{16}\right ) \tanh \left (d x +c \right )+\frac {5 \arctan \left ({\mathrm e}^{d x +c}\right )}{8}\right )}{d}\) \(138\)
default \(\frac {2 a^{3} \arctan \left ({\mathrm e}^{d x +c}\right )+3 a^{2} b \left (\frac {\operatorname {sech}\left (d x +c \right ) \tanh \left (d x +c \right )}{2}+\arctan \left ({\mathrm e}^{d x +c}\right )\right )+3 a \,b^{2} \left (\left (\frac {\operatorname {sech}\left (d x +c \right )^{3}}{4}+\frac {3 \,\operatorname {sech}\left (d x +c \right )}{8}\right ) \tanh \left (d x +c \right )+\frac {3 \arctan \left ({\mathrm e}^{d x +c}\right )}{4}\right )+b^{3} \left (\left (\frac {\operatorname {sech}\left (d x +c \right )^{5}}{6}+\frac {5 \operatorname {sech}\left (d x +c \right )^{3}}{24}+\frac {5 \,\operatorname {sech}\left (d x +c \right )}{16}\right ) \tanh \left (d x +c \right )+\frac {5 \arctan \left ({\mathrm e}^{d x +c}\right )}{8}\right )}{d}\) \(138\)
parts \(\frac {a^{3} \arctan \left (\sinh \left (d x +c \right )\right )}{d}+\frac {b^{3} \left (\left (\frac {\operatorname {sech}\left (d x +c \right )^{5}}{6}+\frac {5 \operatorname {sech}\left (d x +c \right )^{3}}{24}+\frac {5 \,\operatorname {sech}\left (d x +c \right )}{16}\right ) \tanh \left (d x +c \right )+\frac {5 \arctan \left ({\mathrm e}^{d x +c}\right )}{8}\right )}{d}+\frac {3 a^{2} b \left (\frac {\operatorname {sech}\left (d x +c \right ) \tanh \left (d x +c \right )}{2}+\arctan \left ({\mathrm e}^{d x +c}\right )\right )}{d}+\frac {3 a \,b^{2} \left (\left (\frac {\operatorname {sech}\left (d x +c \right )^{3}}{4}+\frac {3 \,\operatorname {sech}\left (d x +c \right )}{8}\right ) \tanh \left (d x +c \right )+\frac {3 \arctan \left ({\mathrm e}^{d x +c}\right )}{4}\right )}{d}\) \(145\)
parallelrisch \(\frac {-15 i \left (a^{2}+a b +\frac {5}{8} b^{2}\right ) \left (\frac {\cosh \left (6 d x +6 c \right )}{15}+\frac {2 \cosh \left (4 d x +4 c \right )}{5}+\cosh \left (2 d x +2 c \right )+\frac {2}{3}\right ) \left (\frac {b}{2}+a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-i\right )+15 i \left (a^{2}+a b +\frac {5}{8} b^{2}\right ) \left (\frac {\cosh \left (6 d x +6 c \right )}{15}+\frac {2 \cosh \left (4 d x +4 c \right )}{5}+\cosh \left (2 d x +2 c \right )+\frac {2}{3}\right ) \left (\frac {b}{2}+a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+i\right )+9 b \left (\left (a^{2}+\frac {17}{12} a b +\frac {85}{216} b^{2}\right ) \sinh \left (3 d x +3 c \right )+\left (\frac {1}{3} a^{2}+\frac {1}{4} a b +\frac {5}{72} b^{2}\right ) \sinh \left (5 d x +5 c \right )+\frac {2 \left (a^{2}+\frac {7}{4} a b +\frac {11}{8} b^{2}\right ) \sinh \left (d x +c \right )}{3}\right )}{d \left (\cosh \left (6 d x +6 c \right )+6 \cosh \left (4 d x +4 c \right )+15 \cosh \left (2 d x +2 c \right )+10\right )}\) \(247\)
risch \(\frac {b \,{\mathrm e}^{d x +c} \left (72 \,{\mathrm e}^{10 d x +10 c} a^{2}+54 \,{\mathrm e}^{10 d x +10 c} a b +15 b^{2} {\mathrm e}^{10 d x +10 c}+216 a^{2} {\mathrm e}^{8 d x +8 c}+306 a b \,{\mathrm e}^{8 d x +8 c}+85 b^{2} {\mathrm e}^{8 d x +8 c}+144 a^{2} {\mathrm e}^{6 d x +6 c}+252 a b \,{\mathrm e}^{6 d x +6 c}+198 b^{2} {\mathrm e}^{6 d x +6 c}-144 a^{2} {\mathrm e}^{4 d x +4 c}-252 a b \,{\mathrm e}^{4 d x +4 c}-198 b^{2} {\mathrm e}^{4 d x +4 c}-216 a^{2} {\mathrm e}^{2 d x +2 c}-306 a b \,{\mathrm e}^{2 d x +2 c}-85 b^{2} {\mathrm e}^{2 d x +2 c}-72 a^{2}-54 a b -15 b^{2}\right )}{24 d \left ({\mathrm e}^{2 d x +2 c}+1\right )^{6}}+\frac {i \ln \left ({\mathrm e}^{d x +c}+i\right ) a^{3}}{d}+\frac {3 i b \ln \left ({\mathrm e}^{d x +c}+i\right ) a^{2}}{2 d}+\frac {9 i b^{2} \ln \left ({\mathrm e}^{d x +c}+i\right ) a}{8 d}+\frac {5 i b^{3} \ln \left ({\mathrm e}^{d x +c}+i\right )}{16 d}-\frac {i \ln \left ({\mathrm e}^{d x +c}-i\right ) a^{3}}{d}-\frac {3 i b \ln \left ({\mathrm e}^{d x +c}-i\right ) a^{2}}{2 d}-\frac {9 i b^{2} \ln \left ({\mathrm e}^{d x +c}-i\right ) a}{8 d}-\frac {5 i b^{3} \ln \left ({\mathrm e}^{d x +c}-i\right )}{16 d}\) \(403\)

Input:

int(sech(d*x+c)*(a+b*sech(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2*a^3*arctan(exp(d*x+c))+3*a^2*b*(1/2*sech(d*x+c)*tanh(d*x+c)+arctan( 
exp(d*x+c)))+3*a*b^2*((1/4*sech(d*x+c)^3+3/8*sech(d*x+c))*tanh(d*x+c)+3/4* 
arctan(exp(d*x+c)))+b^3*((1/6*sech(d*x+c)^5+5/24*sech(d*x+c)^3+5/16*sech(d 
*x+c))*tanh(d*x+c)+5/8*arctan(exp(d*x+c))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3465 vs. \(2 (117) = 234\).

Time = 0.33 (sec) , antiderivative size = 3465, normalized size of antiderivative = 27.72 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\text {Too large to display} \] Input:

integrate(sech(d*x+c)*(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\int \left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{3} \operatorname {sech}{\left (c + d x \right )}\, dx \] Input:

integrate(sech(d*x+c)*(a+b*sech(d*x+c)**2)**3,x)
 

Output:

Integral((a + b*sech(c + d*x)**2)**3*sech(c + d*x), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 365 vs. \(2 (117) = 234\).

Time = 0.14 (sec) , antiderivative size = 365, normalized size of antiderivative = 2.92 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=-\frac {1}{24} \, b^{3} {\left (\frac {15 \, \arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac {15 \, e^{\left (-d x - c\right )} + 85 \, e^{\left (-3 \, d x - 3 \, c\right )} + 198 \, e^{\left (-5 \, d x - 5 \, c\right )} - 198 \, e^{\left (-7 \, d x - 7 \, c\right )} - 85 \, e^{\left (-9 \, d x - 9 \, c\right )} - 15 \, e^{\left (-11 \, d x - 11 \, c\right )}}{d {\left (6 \, e^{\left (-2 \, d x - 2 \, c\right )} + 15 \, e^{\left (-4 \, d x - 4 \, c\right )} + 20 \, e^{\left (-6 \, d x - 6 \, c\right )} + 15 \, e^{\left (-8 \, d x - 8 \, c\right )} + 6 \, e^{\left (-10 \, d x - 10 \, c\right )} + e^{\left (-12 \, d x - 12 \, c\right )} + 1\right )}}\right )} - \frac {3}{4} \, a b^{2} {\left (\frac {3 \, \arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac {3 \, e^{\left (-d x - c\right )} + 11 \, e^{\left (-3 \, d x - 3 \, c\right )} - 11 \, e^{\left (-5 \, d x - 5 \, c\right )} - 3 \, e^{\left (-7 \, d x - 7 \, c\right )}}{d {\left (4 \, e^{\left (-2 \, d x - 2 \, c\right )} + 6 \, e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-8 \, d x - 8 \, c\right )} + 1\right )}}\right )} - 3 \, a^{2} b {\left (\frac {\arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac {e^{\left (-d x - c\right )} - e^{\left (-3 \, d x - 3 \, c\right )}}{d {\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} + \frac {a^{3} \arctan \left (\sinh \left (d x + c\right )\right )}{d} \] Input:

integrate(sech(d*x+c)*(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")
 

Output:

-1/24*b^3*(15*arctan(e^(-d*x - c))/d - (15*e^(-d*x - c) + 85*e^(-3*d*x - 3 
*c) + 198*e^(-5*d*x - 5*c) - 198*e^(-7*d*x - 7*c) - 85*e^(-9*d*x - 9*c) - 
15*e^(-11*d*x - 11*c))/(d*(6*e^(-2*d*x - 2*c) + 15*e^(-4*d*x - 4*c) + 20*e 
^(-6*d*x - 6*c) + 15*e^(-8*d*x - 8*c) + 6*e^(-10*d*x - 10*c) + e^(-12*d*x 
- 12*c) + 1))) - 3/4*a*b^2*(3*arctan(e^(-d*x - c))/d - (3*e^(-d*x - c) + 1 
1*e^(-3*d*x - 3*c) - 11*e^(-5*d*x - 5*c) - 3*e^(-7*d*x - 7*c))/(d*(4*e^(-2 
*d*x - 2*c) + 6*e^(-4*d*x - 4*c) + 4*e^(-6*d*x - 6*c) + e^(-8*d*x - 8*c) + 
 1))) - 3*a^2*b*(arctan(e^(-d*x - c))/d - (e^(-d*x - c) - e^(-3*d*x - 3*c) 
)/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) + 1))) + a^3*arctan(sinh(d*x + 
 c))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 310 vs. \(2 (117) = 234\).

Time = 0.13 (sec) , antiderivative size = 310, normalized size of antiderivative = 2.48 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\frac {3 \, {\left (\pi + 2 \, \arctan \left (\frac {1}{2} \, {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )} e^{\left (-d x - c\right )}\right )\right )} {\left (16 \, a^{3} + 24 \, a^{2} b + 18 \, a b^{2} + 5 \, b^{3}\right )} + \frac {4 \, {\left (72 \, a^{2} b {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{5} + 54 \, a b^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{5} + 15 \, b^{3} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{5} + 576 \, a^{2} b {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{3} + 576 \, a b^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{3} + 160 \, b^{3} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{3} + 1152 \, a^{2} b {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 1440 \, a b^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 528 \, b^{3} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}\right )}}{{\left ({\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 4\right )}^{3}}}{96 \, d} \] Input:

integrate(sech(d*x+c)*(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")
 

Output:

1/96*(3*(pi + 2*arctan(1/2*(e^(2*d*x + 2*c) - 1)*e^(-d*x - c)))*(16*a^3 + 
24*a^2*b + 18*a*b^2 + 5*b^3) + 4*(72*a^2*b*(e^(d*x + c) - e^(-d*x - c))^5 
+ 54*a*b^2*(e^(d*x + c) - e^(-d*x - c))^5 + 15*b^3*(e^(d*x + c) - e^(-d*x 
- c))^5 + 576*a^2*b*(e^(d*x + c) - e^(-d*x - c))^3 + 576*a*b^2*(e^(d*x + c 
) - e^(-d*x - c))^3 + 160*b^3*(e^(d*x + c) - e^(-d*x - c))^3 + 1152*a^2*b* 
(e^(d*x + c) - e^(-d*x - c)) + 1440*a*b^2*(e^(d*x + c) - e^(-d*x - c)) + 5 
28*b^3*(e^(d*x + c) - e^(-d*x - c)))/((e^(d*x + c) - e^(-d*x - c))^2 + 4)^ 
3)/d
 

Mupad [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 535, normalized size of antiderivative = 4.28 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\frac {\mathrm {atan}\left (\frac {{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\left (16\,a^3\,\sqrt {d^2}+5\,b^3\,\sqrt {d^2}+18\,a\,b^2\,\sqrt {d^2}+24\,a^2\,b\,\sqrt {d^2}\right )}{d\,\sqrt {256\,a^6+768\,a^5\,b+1152\,a^4\,b^2+1024\,a^3\,b^3+564\,a^2\,b^4+180\,a\,b^5+25\,b^6}}\right )\,\sqrt {256\,a^6+768\,a^5\,b+1152\,a^4\,b^2+1024\,a^3\,b^3+564\,a^2\,b^4+180\,a\,b^5+25\,b^6}}{8\,\sqrt {d^2}}-\frac {{\mathrm {e}}^{c+d\,x}\,\left (54\,a\,b^2-b^3\right )}{3\,d\,\left (3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1\right )}+\frac {80\,b^3\,{\mathrm {e}}^{c+d\,x}}{3\,d\,\left (5\,{\mathrm {e}}^{2\,c+2\,d\,x}+10\,{\mathrm {e}}^{4\,c+4\,d\,x}+10\,{\mathrm {e}}^{6\,c+6\,d\,x}+5\,{\mathrm {e}}^{8\,c+8\,d\,x}+{\mathrm {e}}^{10\,c+10\,d\,x}+1\right )}+\frac {6\,{\mathrm {e}}^{c+d\,x}\,\left (2\,a\,b^2-3\,b^3\right )}{d\,\left (4\,{\mathrm {e}}^{2\,c+2\,d\,x}+6\,{\mathrm {e}}^{4\,c+4\,d\,x}+4\,{\mathrm {e}}^{6\,c+6\,d\,x}+{\mathrm {e}}^{8\,c+8\,d\,x}+1\right )}-\frac {32\,b^3\,{\mathrm {e}}^{c+d\,x}}{3\,d\,\left (6\,{\mathrm {e}}^{2\,c+2\,d\,x}+15\,{\mathrm {e}}^{4\,c+4\,d\,x}+20\,{\mathrm {e}}^{6\,c+6\,d\,x}+15\,{\mathrm {e}}^{8\,c+8\,d\,x}+6\,{\mathrm {e}}^{10\,c+10\,d\,x}+{\mathrm {e}}^{12\,c+12\,d\,x}+1\right )}+\frac {{\mathrm {e}}^{c+d\,x}\,\left (24\,a^2\,b+18\,a\,b^2+5\,b^3\right )}{8\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}+\frac {{\mathrm {e}}^{c+d\,x}\,\left (-72\,a^2\,b+18\,a\,b^2+5\,b^3\right )}{12\,d\,\left (2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1\right )} \] Input:

int((a + b/cosh(c + d*x)^2)^3/cosh(c + d*x),x)
 

Output:

(atan((exp(d*x)*exp(c)*(16*a^3*(d^2)^(1/2) + 5*b^3*(d^2)^(1/2) + 18*a*b^2* 
(d^2)^(1/2) + 24*a^2*b*(d^2)^(1/2)))/(d*(180*a*b^5 + 768*a^5*b + 256*a^6 + 
 25*b^6 + 564*a^2*b^4 + 1024*a^3*b^3 + 1152*a^4*b^2)^(1/2)))*(180*a*b^5 + 
768*a^5*b + 256*a^6 + 25*b^6 + 564*a^2*b^4 + 1024*a^3*b^3 + 1152*a^4*b^2)^ 
(1/2))/(8*(d^2)^(1/2)) - (exp(c + d*x)*(54*a*b^2 - b^3))/(3*d*(3*exp(2*c + 
 2*d*x) + 3*exp(4*c + 4*d*x) + exp(6*c + 6*d*x) + 1)) + (80*b^3*exp(c + d* 
x))/(3*d*(5*exp(2*c + 2*d*x) + 10*exp(4*c + 4*d*x) + 10*exp(6*c + 6*d*x) + 
 5*exp(8*c + 8*d*x) + exp(10*c + 10*d*x) + 1)) + (6*exp(c + d*x)*(2*a*b^2 
- 3*b^3))/(d*(4*exp(2*c + 2*d*x) + 6*exp(4*c + 4*d*x) + 4*exp(6*c + 6*d*x) 
 + exp(8*c + 8*d*x) + 1)) - (32*b^3*exp(c + d*x))/(3*d*(6*exp(2*c + 2*d*x) 
 + 15*exp(4*c + 4*d*x) + 20*exp(6*c + 6*d*x) + 15*exp(8*c + 8*d*x) + 6*exp 
(10*c + 10*d*x) + exp(12*c + 12*d*x) + 1)) + (exp(c + d*x)*(18*a*b^2 + 24* 
a^2*b + 5*b^3))/(8*d*(exp(2*c + 2*d*x) + 1)) + (exp(c + d*x)*(18*a*b^2 - 7 
2*a^2*b + 5*b^3))/(12*d*(2*exp(2*c + 2*d*x) + exp(4*c + 4*d*x) + 1))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 971, normalized size of antiderivative = 7.77 \[ \int \text {sech}(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx =\text {Too large to display} \] Input:

int(sech(d*x+c)*(a+b*sech(d*x+c)^2)^3,x)
 

Output:

(48*e**(12*c + 12*d*x)*atan(e**(c + d*x))*a**3 + 72*e**(12*c + 12*d*x)*ata 
n(e**(c + d*x))*a**2*b + 54*e**(12*c + 12*d*x)*atan(e**(c + d*x))*a*b**2 + 
 15*e**(12*c + 12*d*x)*atan(e**(c + d*x))*b**3 + 288*e**(10*c + 10*d*x)*at 
an(e**(c + d*x))*a**3 + 432*e**(10*c + 10*d*x)*atan(e**(c + d*x))*a**2*b + 
 324*e**(10*c + 10*d*x)*atan(e**(c + d*x))*a*b**2 + 90*e**(10*c + 10*d*x)* 
atan(e**(c + d*x))*b**3 + 720*e**(8*c + 8*d*x)*atan(e**(c + d*x))*a**3 + 1 
080*e**(8*c + 8*d*x)*atan(e**(c + d*x))*a**2*b + 810*e**(8*c + 8*d*x)*atan 
(e**(c + d*x))*a*b**2 + 225*e**(8*c + 8*d*x)*atan(e**(c + d*x))*b**3 + 960 
*e**(6*c + 6*d*x)*atan(e**(c + d*x))*a**3 + 1440*e**(6*c + 6*d*x)*atan(e** 
(c + d*x))*a**2*b + 1080*e**(6*c + 6*d*x)*atan(e**(c + d*x))*a*b**2 + 300* 
e**(6*c + 6*d*x)*atan(e**(c + d*x))*b**3 + 720*e**(4*c + 4*d*x)*atan(e**(c 
 + d*x))*a**3 + 1080*e**(4*c + 4*d*x)*atan(e**(c + d*x))*a**2*b + 810*e**( 
4*c + 4*d*x)*atan(e**(c + d*x))*a*b**2 + 225*e**(4*c + 4*d*x)*atan(e**(c + 
 d*x))*b**3 + 288*e**(2*c + 2*d*x)*atan(e**(c + d*x))*a**3 + 432*e**(2*c + 
 2*d*x)*atan(e**(c + d*x))*a**2*b + 324*e**(2*c + 2*d*x)*atan(e**(c + d*x) 
)*a*b**2 + 90*e**(2*c + 2*d*x)*atan(e**(c + d*x))*b**3 + 48*atan(e**(c + d 
*x))*a**3 + 72*atan(e**(c + d*x))*a**2*b + 54*atan(e**(c + d*x))*a*b**2 + 
15*atan(e**(c + d*x))*b**3 + 72*e**(11*c + 11*d*x)*a**2*b + 54*e**(11*c + 
11*d*x)*a*b**2 + 15*e**(11*c + 11*d*x)*b**3 + 216*e**(9*c + 9*d*x)*a**2*b 
+ 306*e**(9*c + 9*d*x)*a*b**2 + 85*e**(9*c + 9*d*x)*b**3 + 144*e**(7*c ...