\(\int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx\) [142]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 64 \[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=\frac {1}{3} \left (c^4-\frac {1}{x^4}\right ) \sqrt {\text {csch}(2 \log (c x))}-\frac {1}{3} c^5 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))} \operatorname {EllipticF}\left (\csc ^{-1}(c x),-1\right ) \] Output:

1/3*(c^4-1/x^4)*csch(2*ln(c*x))^(1/2)-1/3*c^5*(1-1/c^4/x^4)^(1/2)*x*csch(2 
*ln(c*x))^(1/2)*InverseJacobiAM(arccsc(c*x),I)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.07 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=-\frac {\sqrt {2-2 c^4 x^4} \sqrt {\frac {c^2 x^2}{-1+c^4 x^4}} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},c^4 x^4\right )}{3 x^4} \] Input:

Integrate[Sqrt[Csch[2*Log[c*x]]]/x^5,x]
 

Output:

-1/3*(Sqrt[2 - 2*c^4*x^4]*Sqrt[(c^2*x^2)/(-1 + c^4*x^4)]*Hypergeometric2F1 
[-3/4, 1/2, 1/4, c^4*x^4])/x^4
 

Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.09, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6086, 6084, 858, 843, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx\)

\(\Big \downarrow \) 6086

\(\displaystyle c^4 \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{c^5 x^5}d(c x)\)

\(\Big \downarrow \) 6084

\(\displaystyle c^5 x \sqrt {1-\frac {1}{c^4 x^4}} \sqrt {\text {csch}(2 \log (c x))} \int \frac {1}{c^6 \sqrt {1-\frac {1}{c^4 x^4}} x^6}d(c x)\)

\(\Big \downarrow \) 858

\(\displaystyle -c^5 x \sqrt {1-\frac {1}{c^4 x^4}} \sqrt {\text {csch}(2 \log (c x))} \int \frac {c^4 x^4}{\sqrt {1-c^4 x^4}}d\frac {1}{c x}\)

\(\Big \downarrow \) 843

\(\displaystyle -c^5 x \sqrt {1-\frac {1}{c^4 x^4}} \sqrt {\text {csch}(2 \log (c x))} \left (\frac {1}{3} \int \frac {1}{\sqrt {1-c^4 x^4}}d\frac {1}{c x}-\frac {\sqrt {1-c^4 x^4}}{3 c x}\right )\)

\(\Big \downarrow \) 762

\(\displaystyle -c^5 x \sqrt {1-\frac {1}{c^4 x^4}} \left (\frac {1}{3} \operatorname {EllipticF}\left (\arcsin \left (\frac {1}{c x}\right ),-1\right )-\frac {\sqrt {1-c^4 x^4}}{3 c x}\right ) \sqrt {\text {csch}(2 \log (c x))}\)

Input:

Int[Sqrt[Csch[2*Log[c*x]]]/x^5,x]
 

Output:

-(c^5*Sqrt[1 - 1/(c^4*x^4)]*x*Sqrt[Csch[2*Log[c*x]]]*(-1/3*Sqrt[1 - c^4*x^ 
4]/(c*x) + EllipticF[ArcSin[1/(c*x)], -1]/3))
 

Defintions of rubi rules used

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 6084
Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] 
 :> Simp[Csch[d*(a + b*Log[x])]^p*((1 - 1/(E^(2*a*d)*x^(2*b*d)))^p/x^((-b)* 
d*p))   Int[(e*x)^m*(1/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)), x], x] 
 /; FreeQ[{a, b, d, e, m, p}, x] &&  !IntegerQ[p]
 

rule 6086
Int[Csch[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m 
_.), x_Symbol] :> Simp[(e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))   Subst[Int[ 
x^((m + 1)/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, 
b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 111 vs. \(2 (55 ) = 110\).

Time = 0.35 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.75

method result size
risch \(\frac {\left (c^{4} x^{4}-1\right ) \sqrt {2}\, \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4}-1}}}{3 x^{4}}+\frac {c^{4} \sqrt {c^{2} x^{2}+1}\, \sqrt {-c^{2} x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-c^{2}}, i\right ) \sqrt {2}\, \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4}-1}}}{3 \sqrt {-c^{2}}\, x}\) \(112\)

Input:

int(csch(2*ln(x*c))^(1/2)/x^5,x,method=_RETURNVERBOSE)
 

Output:

1/3*(c^4*x^4-1)/x^4*2^(1/2)*(c^2*x^2/(c^4*x^4-1))^(1/2)+1/3*c^4/(-c^2)^(1/ 
2)*(c^2*x^2+1)^(1/2)*(-c^2*x^2+1)^(1/2)*EllipticF(x*(-c^2)^(1/2),I)*2^(1/2 
)*(c^2*x^2/(c^4*x^4-1))^(1/2)/x
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=-\frac {2 \, \sqrt {-\frac {1}{2}} c^{4} x^{4} F(\arcsin \left (c x\right )\,|\,-1) - \sqrt {2} {\left (c^{4} x^{4} - 1\right )} \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4} - 1}}}{3 \, x^{4}} \] Input:

integrate(csch(2*log(c*x))^(1/2)/x^5,x, algorithm="fricas")
 

Output:

-1/3*(2*sqrt(-1/2)*c^4*x^4*elliptic_f(arcsin(c*x), -1) - sqrt(2)*(c^4*x^4 
- 1)*sqrt(c^2*x^2/(c^4*x^4 - 1)))/x^4
 

Sympy [F]

\[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=\int \frac {\sqrt {\operatorname {csch}{\left (2 \log {\left (c x \right )} \right )}}}{x^{5}}\, dx \] Input:

integrate(csch(2*ln(c*x))**(1/2)/x**5,x)
 

Output:

Integral(sqrt(csch(2*log(c*x)))/x**5, x)
 

Maxima [F]

\[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=\int { \frac {\sqrt {\operatorname {csch}\left (2 \, \log \left (c x\right )\right )}}{x^{5}} \,d x } \] Input:

integrate(csch(2*log(c*x))^(1/2)/x^5,x, algorithm="maxima")
 

Output:

integrate(sqrt(csch(2*log(c*x)))/x^5, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=\text {Timed out} \] Input:

integrate(csch(2*log(c*x))^(1/2)/x^5,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=\int \frac {\sqrt {\frac {1}{\mathrm {sinh}\left (2\,\ln \left (c\,x\right )\right )}}}{x^5} \,d x \] Input:

int((1/sinh(2*log(c*x)))^(1/2)/x^5,x)
 

Output:

int((1/sinh(2*log(c*x)))^(1/2)/x^5, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\text {csch}(2 \log (c x))}}{x^5} \, dx=\int \frac {\sqrt {\mathrm {csch}\left (2 \,\mathrm {log}\left (c x \right )\right )}}{x^{5}}d x \] Input:

int(csch(2*log(c*x))^(1/2)/x^5,x)
 

Output:

int(sqrt(csch(2*log(c*x)))/x**5,x)