\(\int \frac {1}{x \text {csch}^{\frac {3}{2}}(a+b \log (c x^n))} \, dx\) [174]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 109 \[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}+\frac {2 i \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{4} \left (2 i a-\pi +2 i b \log \left (c x^n\right )\right ),2\right ) \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n} \] Output:

2/3*cosh(a+b*ln(c*x^n))/b/n/csch(a+b*ln(c*x^n))^(1/2)+2/3*I*csch(a+b*ln(c* 
x^n))^(1/2)*InverseJacobiAM(1/2*I*a-1/4*Pi+1/2*I*b*ln(c*x^n),2^(1/2))*(I*s 
inh(a+b*ln(c*x^n)))^(1/2)/b/n
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.79 \[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \left (-2 i \operatorname {EllipticF}\left (\frac {1}{4} \left (-2 i a+\pi -2 i b \log \left (c x^n\right )\right ),2\right ) \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}+\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )\right )}{3 b n} \] Input:

Integrate[1/(x*Csch[a + b*Log[c*x^n]]^(3/2)),x]
 

Output:

(Sqrt[Csch[a + b*Log[c*x^n]]]*((-2*I)*EllipticF[((-2*I)*a + Pi - (2*I)*b*L 
og[c*x^n])/4, 2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]] + Sinh[2*(a + b*Log[c*x^n] 
)]))/(3*b*n)
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3039, 3042, 4256, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \frac {1}{\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\left (i \csc \left (i a+i b \log \left (c x^n\right )\right )\right )^{3/2}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}-\frac {1}{3} \int \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}-\frac {1}{3} \int \sqrt {i \csc \left (i a+i b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}-\frac {1}{3} \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}-\frac {1}{3} \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\sin \left (i a+i b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}+\frac {2 i \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} \left (i a+i b \log \left (c x^n\right )-\frac {\pi }{2}\right ),2\right )}{3 b}}{n}\)

Input:

Int[1/(x*Csch[a + b*Log[c*x^n]]^(3/2)),x]
 

Output:

((2*Cosh[a + b*Log[c*x^n]])/(3*b*Sqrt[Csch[a + b*Log[c*x^n]]]) + (((2*I)/3 
)*Sqrt[Csch[a + b*Log[c*x^n]]]*EllipticF[(I*a - Pi/2 + I*b*Log[c*x^n])/2, 
2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]])/b)/n
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.31

method result size
derivativedivides \(\frac {-\frac {i \sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )}{3}+\frac {2 {\cosh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2} \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}{3}}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(143\)
default \(\frac {-\frac {i \sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )}{3}+\frac {2 {\cosh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2} \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}{3}}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(143\)

Input:

int(1/x/csch(a+b*ln(c*x^n))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/n*(-1/3*I*(1-I*sinh(a+b*ln(c*x^n)))^(1/2)*2^(1/2)*(1+I*sinh(a+b*ln(c*x^n 
)))^(1/2)*(I*sinh(a+b*ln(c*x^n)))^(1/2)*EllipticF((1-I*sinh(a+b*ln(c*x^n)) 
)^(1/2),1/2*2^(1/2))+2/3*cosh(a+b*ln(c*x^n))^2*sinh(a+b*ln(c*x^n)))/cosh(a 
+b*ln(c*x^n))/sinh(a+b*ln(c*x^n))^(1/2)/b
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 370 vs. \(2 (89) = 178\).

Time = 0.09 (sec) , antiderivative size = 370, normalized size of antiderivative = 3.39 \[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {\sqrt {2} {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} + 4 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + 6 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 4 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{3} + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{4} - 1\right )} \sqrt {\frac {\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1}} - 4 \, {\left (\sqrt {2} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \sqrt {2} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sqrt {2} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2}\right )} {\rm weierstrassPInverse}\left (4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}{6 \, {\left (b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + b n \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2}\right )}} \] Input:

integrate(1/x/csch(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")
 

Output:

1/6*(sqrt(2)*(cosh(b*n*log(x) + b*log(c) + a)^4 + 4*cosh(b*n*log(x) + b*lo 
g(c) + a)^3*sinh(b*n*log(x) + b*log(c) + a) + 6*cosh(b*n*log(x) + b*log(c) 
 + a)^2*sinh(b*n*log(x) + b*log(c) + a)^2 + 4*cosh(b*n*log(x) + b*log(c) + 
 a)*sinh(b*n*log(x) + b*log(c) + a)^3 + sinh(b*n*log(x) + b*log(c) + a)^4 
- 1)*sqrt((cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + 
a))/(cosh(b*n*log(x) + b*log(c) + a)^2 + 2*cosh(b*n*log(x) + b*log(c) + a) 
*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)^2 - 1)) 
 - 4*(sqrt(2)*cosh(b*n*log(x) + b*log(c) + a)^2 + 2*sqrt(2)*cosh(b*n*log(x 
) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sqrt(2)*sinh(b*n*log(x 
) + b*log(c) + a)^2)*weierstrassPInverse(4, 0, cosh(b*n*log(x) + b*log(c) 
+ a) + sinh(b*n*log(x) + b*log(c) + a)))/(b*n*cosh(b*n*log(x) + b*log(c) + 
 a)^2 + 2*b*n*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + 
 a) + b*n*sinh(b*n*log(x) + b*log(c) + a)^2)
 

Sympy [F]

\[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {1}{x \operatorname {csch}^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}\, dx \] Input:

integrate(1/x/csch(a+b*ln(c*x**n))**(3/2),x)
 

Output:

Integral(1/(x*csch(a + b*log(c*x**n))**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int { \frac {1}{x \operatorname {csch}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/x/csch(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/(x*csch(b*log(c*x^n) + a)^(3/2)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\text {Timed out} \] Input:

integrate(1/x/csch(a+b*log(c*x^n))^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {1}{x\,{\left (\frac {1}{\mathrm {sinh}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{3/2}} \,d x \] Input:

int(1/(x*(1/sinh(a + b*log(c*x^n)))^(3/2)),x)
 

Output:

int(1/(x*(1/sinh(a + b*log(c*x^n)))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {\sqrt {\mathrm {csch}\left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}}{{\mathrm {csch}\left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}^{2} x}d x \] Input:

int(1/x/csch(a+b*log(c*x^n))^(3/2),x)
 

Output:

int(sqrt(csch(log(x**n*c)*b + a))/(csch(log(x**n*c)*b + a)**2*x),x)