\(\int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx\) [89]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 286 \[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=-\frac {8 e^{\frac {5 (a-d)}{3}+\frac {11}{3} (d+b x)}}{3 b \left (1+e^{2 (d+b x)}\right )^3}-\frac {22 e^{\frac {5 (a-d)}{3}+\frac {5}{3} (d+b x)}}{9 b \left (1+e^{2 (d+b x)}\right )^2}+\frac {55 e^{\frac {5 (a-d)}{3}+\frac {5}{3} (d+b x)}}{27 b \left (1+e^{2 (d+b x)}\right )}+\frac {55 e^{\frac {5 (a-d)}{3}} \arctan \left (e^{\frac {1}{3} (d+b x)}\right )}{81 b}-\frac {55 e^{\frac {5 (a-d)}{3}} \arctan \left (\sqrt {3}-2 e^{\frac {1}{3} (d+b x)}\right )}{162 b}+\frac {55 e^{\frac {5 (a-d)}{3}} \arctan \left (\sqrt {3}+2 e^{\frac {1}{3} (d+b x)}\right )}{162 b}-\frac {55 e^{\frac {5 (a-d)}{3}} \text {arctanh}\left (\frac {\sqrt {3} e^{\frac {1}{3} (d+b x)}}{1+e^{\frac {2}{3} (d+b x)}}\right )}{54 \sqrt {3} b} \] Output:

-8/3*exp(5/3*a+2*d+11/3*b*x)/b/(1+exp(2*b*x+2*d))^3-22/9*exp(5/3*b*x+5/3*a 
)/b/(1+exp(2*b*x+2*d))^2+55/27*exp(5/3*b*x+5/3*a)/b/(1+exp(2*b*x+2*d))+55/ 
81*exp(5/3*a-5/3*d)*arctan(exp(1/3*b*x+1/3*d))/b+55/162*exp(5/3*a-5/3*d)*a 
rctan(-3^(1/2)+2*exp(1/3*b*x+1/3*d))/b+55/162*exp(5/3*a-5/3*d)*arctan(3^(1 
/2)+2*exp(1/3*b*x+1/3*d))/b-55/162*3^(1/2)*exp(5/3*a-5/3*d)*arctanh(3^(1/2 
)*exp(1/3*b*x+1/3*d)/(1+exp(2/3*b*x+2/3*d)))/b
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.10 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.24 \[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=\frac {e^{\frac {5}{3} (a+b x)} \left (4 e^{2 (d+b x)} \operatorname {Hypergeometric2F1}\left (\frac {11}{6},2,\frac {17}{6},-e^{2 (d+b x)}\right )+\text {sech}^2(d+b x) (5+6 \tanh (d+b x))\right )}{18 b} \] Input:

Integrate[E^((5*(a + b*x))/3)*Sech[d + b*x]^4,x]
 

Output:

(E^((5*(a + b*x))/3)*(4*E^(2*(d + b*x))*Hypergeometric2F1[11/6, 2, 17/6, - 
E^(2*(d + b*x))] + Sech[d + b*x]^2*(5 + 6*Tanh[d + b*x])))/(18*b)
 

Rubi [A] (warning: unable to verify)

Time = 0.40 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.78, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.650, Rules used = {2720, 27, 817, 817, 819, 824, 27, 216, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(b x+d) \, dx\)

\(\Big \downarrow \) 2720

\(\displaystyle \frac {3 \int \frac {16 e^{\frac {5 a}{3}+\frac {16 b x}{3}}}{\left (1+e^{2 b x}\right )^4}de^{\frac {b x}{3}}}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {48 e^{5 a/3} \int \frac {e^{\frac {16 b x}{3}}}{\left (1+e^{2 b x}\right )^4}de^{\frac {b x}{3}}}{b}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \int \frac {e^{\frac {10 b x}{3}}}{\left (1+e^{2 b x}\right )^3}de^{\frac {b x}{3}}-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \int \frac {e^{\frac {4 b x}{3}}}{\left (1+e^{2 b x}\right )^2}de^{\frac {b x}{3}}-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \int \frac {e^{\frac {4 b x}{3}}}{1+e^{2 b x}}de^{\frac {b x}{3}}+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 824

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{3} \int \frac {1}{1+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}+\frac {1}{3} \int -\frac {1-\sqrt {3} e^{\frac {b x}{3}}}{2 \left (1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}\right )}de^{\frac {b x}{3}}+\frac {1}{3} \int -\frac {1+\sqrt {3} e^{\frac {b x}{3}}}{2 \left (1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}\right )}de^{\frac {b x}{3}}\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{3} \int \frac {1}{1+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\frac {1}{6} \int \frac {1-\sqrt {3} e^{\frac {b x}{3}}}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\frac {1}{6} \int \frac {1+\sqrt {3} e^{\frac {b x}{3}}}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (-\frac {1}{6} \int \frac {1-\sqrt {3} e^{\frac {b x}{3}}}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\frac {1}{6} \int \frac {1+\sqrt {3} e^{\frac {b x}{3}}}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}+\frac {1}{3} \arctan \left (e^{\frac {b x}{3}}\right )\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}+\frac {1}{2} \sqrt {3} \int -\frac {\sqrt {3}-2 e^{\frac {b x}{3}}}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}+2 e^{\frac {b x}{3}}}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{3} \arctan \left (e^{\frac {b x}{3}}\right )\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-2 e^{\frac {b x}{3}}}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{6} \left (\frac {1}{2} \int \frac {1}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}+2 e^{\frac {b x}{3}}}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{3} \arctan \left (e^{\frac {b x}{3}}\right )\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{6} \left (-\int \frac {1}{-1-e^{\frac {2 b x}{3}}}d\left (-\sqrt {3}+2 e^{\frac {b x}{3}}\right )-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-2 e^{\frac {b x}{3}}}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{6} \left (-\int \frac {1}{-1-e^{\frac {2 b x}{3}}}d\left (\sqrt {3}+2 e^{\frac {b x}{3}}\right )-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}+2 e^{\frac {b x}{3}}}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{3} \arctan \left (e^{\frac {b x}{3}}\right )\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{6} \left (-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}-2 e^{\frac {b x}{3}}}{1-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}-\arctan \left (\sqrt {3}-2 e^{\frac {b x}{3}}\right )\right )+\frac {1}{6} \left (\arctan \left (2 e^{\frac {b x}{3}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \int \frac {\sqrt {3}+2 e^{\frac {b x}{3}}}{1+\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}}de^{\frac {b x}{3}}\right )+\frac {1}{3} \arctan \left (e^{\frac {b x}{3}}\right )\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {48 e^{5 a/3} \left (\frac {11}{18} \left (\frac {5}{12} \left (\frac {1}{6} \left (\frac {1}{3} \arctan \left (e^{\frac {b x}{3}}\right )+\frac {1}{6} \left (\frac {1}{2} \sqrt {3} \log \left (-\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}+1\right )-\arctan \left (\sqrt {3}-2 e^{\frac {b x}{3}}\right )\right )+\frac {1}{6} \left (\arctan \left (2 e^{\frac {b x}{3}}+\sqrt {3}\right )-\frac {1}{2} \sqrt {3} \log \left (\sqrt {3} e^{\frac {b x}{3}}+e^{\frac {2 b x}{3}}+1\right )\right )\right )+\frac {e^{\frac {5 b x}{3}}}{6 \left (e^{2 b x}+1\right )}\right )-\frac {e^{\frac {5 b x}{3}}}{12 \left (e^{2 b x}+1\right )^2}\right )-\frac {e^{\frac {11 b x}{3}}}{18 \left (e^{2 b x}+1\right )^3}\right )}{b}\)

Input:

Int[E^((5*(a + b*x))/3)*Sech[d + b*x]^4,x]
 

Output:

(48*E^((5*a)/3)*(-1/18*E^((11*b*x)/3)/(1 + E^(2*b*x))^3 + (11*(-1/12*E^((5 
*b*x)/3)/(1 + E^(2*b*x))^2 + (5*(E^((5*b*x)/3)/(6*(1 + E^(2*b*x))) + (ArcT 
an[E^((b*x)/3)]/3 + (-ArcTan[Sqrt[3] - 2*E^((b*x)/3)] + (Sqrt[3]*Log[1 - S 
qrt[3]*E^((b*x)/3) + E^((2*b*x)/3)])/2)/6 + (ArcTan[Sqrt[3] + 2*E^((b*x)/3 
)] - (Sqrt[3]*Log[1 + Sqrt[3]*E^((b*x)/3) + E^((2*b*x)/3)])/2)/6)/6))/12)) 
/18))/b
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 824
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator 
[Rt[a/b, n]], s = Denominator[Rt[a/b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k 
- 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 
 1)*(Pi/n)]*x + s^2*x^2), x] + Int[(r*Cos[(2*k - 1)*m*(Pi/n)] + s*Cos[(2*k 
- 1)*(m + 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] 
; 2*(-1)^(m/2)*(r^(m + 2)/(a*n*s^m))   Int[1/(r^2 + s^2*x^2), x] + 2*(r^(m 
+ 1)/(a*n*s^m))   Sum[u, {k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGt 
Q[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 2.40 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.57

method result size
risch \(\frac {\left (55 \,{\mathrm e}^{4 b x +4 d}-28 \,{\mathrm e}^{2 b x +2 d}-11\right ) {\mathrm e}^{\frac {5 b x}{3}+\frac {5 a}{3}}}{27 \left (1+{\mathrm e}^{2 b x +2 d}\right )^{3} b}+16 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (45137758519296 b^{4} \textit {\_Z}^{4}-20323353600 b^{2} \textit {\_Z}^{2}+9150625\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{\frac {b x}{3}+\frac {d}{3}}+\frac {17414258688 b^{3} \textit {\_R}^{3}}{166375}-\frac {2592 b \textit {\_R}}{55}\right )\right ) {\mathrm e}^{\frac {5 a}{3}-\frac {5 d}{3}}+\frac {55 i \ln \left ({\mathrm e}^{\frac {b x}{3}+\frac {d}{3}}+i\right ) {\mathrm e}^{\frac {5 a}{3}-\frac {5 d}{3}}}{162 b}-\frac {55 i \ln \left ({\mathrm e}^{\frac {b x}{3}+\frac {d}{3}}-i\right ) {\mathrm e}^{\frac {5 a}{3}-\frac {5 d}{3}}}{162 b}\) \(164\)

Input:

int(exp(5/3*b*x+5/3*a)*sech(b*x+d)^4,x,method=_RETURNVERBOSE)
 

Output:

1/27/(1+exp(2*b*x+2*d))^3/b*(55*exp(4*b*x+4*d)-28*exp(2*b*x+2*d)-11)*exp(5 
/3*b*x+5/3*a)+16*sum(_R*ln(exp(1/3*b*x+1/3*d)+17414258688/166375*b^3*_R^3- 
2592/55*b*_R),_R=RootOf(45137758519296*_Z^4*b^4-20323353600*_Z^2*b^2+91506 
25))*exp(5/3*a-5/3*d)+55/162*I*ln(exp(1/3*b*x+1/3*d)+I)/b*exp(5/3*a-5/3*d) 
-55/162*I*ln(exp(1/3*b*x+1/3*d)-I)/b*exp(5/3*a-5/3*d)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9595 vs. \(2 (211) = 422\).

Time = 0.20 (sec) , antiderivative size = 9595, normalized size of antiderivative = 33.55 \[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=\text {Too large to display} \] Input:

integrate(exp(5/3*b*x+5/3*a)*sech(b*x+d)^4,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=e^{\frac {5 a}{3}} \int e^{\frac {5 b x}{3}} \operatorname {sech}^{4}{\left (b x + d \right )}\, dx \] Input:

integrate(exp(5/3*b*x+5/3*a)*sech(b*x+d)**4,x)
 

Output:

exp(5*a/3)*Integral(exp(5*b*x/3)*sech(b*x + d)**4, x)
 

Maxima [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.72 \[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=-\frac {55 \, {\left (\sqrt {3} \log \left (\sqrt {3} e^{\left (-\frac {1}{3} \, b x - \frac {1}{3} \, d\right )} + e^{\left (-\frac {2}{3} \, b x - \frac {2}{3} \, d\right )} + 1\right ) - \sqrt {3} \log \left (-\sqrt {3} e^{\left (-\frac {1}{3} \, b x - \frac {1}{3} \, d\right )} + e^{\left (-\frac {2}{3} \, b x - \frac {2}{3} \, d\right )} + 1\right ) + 2 \, \arctan \left (\sqrt {3} + 2 \, e^{\left (-\frac {1}{3} \, b x - \frac {1}{3} \, d\right )}\right ) + 2 \, \arctan \left (-\sqrt {3} + 2 \, e^{\left (-\frac {1}{3} \, b x - \frac {1}{3} \, d\right )}\right ) + 4 \, \arctan \left (e^{\left (-\frac {1}{3} \, b x - \frac {1}{3} \, d\right )}\right )\right )} e^{\left (\frac {5}{3} \, a - \frac {5}{3} \, d\right )}}{324 \, b} + \frac {{\left (55 \, e^{\left (-\frac {1}{3} \, b x - \frac {1}{3} \, d\right )} - 28 \, e^{\left (-\frac {7}{3} \, b x - \frac {7}{3} \, d\right )} - 11 \, e^{\left (-\frac {13}{3} \, b x - \frac {13}{3} \, d\right )}\right )} e^{\left (\frac {5}{3} \, a - \frac {5}{3} \, d\right )}}{27 \, b {\left (3 \, e^{\left (-2 \, b x - 2 \, d\right )} + 3 \, e^{\left (-4 \, b x - 4 \, d\right )} + e^{\left (-6 \, b x - 6 \, d\right )} + 1\right )}} \] Input:

integrate(exp(5/3*b*x+5/3*a)*sech(b*x+d)^4,x, algorithm="maxima")
 

Output:

-55/324*(sqrt(3)*log(sqrt(3)*e^(-1/3*b*x - 1/3*d) + e^(-2/3*b*x - 2/3*d) + 
 1) - sqrt(3)*log(-sqrt(3)*e^(-1/3*b*x - 1/3*d) + e^(-2/3*b*x - 2/3*d) + 1 
) + 2*arctan(sqrt(3) + 2*e^(-1/3*b*x - 1/3*d)) + 2*arctan(-sqrt(3) + 2*e^( 
-1/3*b*x - 1/3*d)) + 4*arctan(e^(-1/3*b*x - 1/3*d)))*e^(5/3*a - 5/3*d)/b + 
 1/27*(55*e^(-1/3*b*x - 1/3*d) - 28*e^(-7/3*b*x - 7/3*d) - 11*e^(-13/3*b*x 
 - 13/3*d))*e^(5/3*a - 5/3*d)/(b*(3*e^(-2*b*x - 2*d) + 3*e^(-4*b*x - 4*d) 
+ e^(-6*b*x - 6*d) + 1))
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.71 \[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=-\frac {{\left (55 \, \sqrt {3} e^{\left (-\frac {17}{3} \, d\right )} \log \left (\sqrt {3} e^{\left (\frac {1}{3} \, b x - \frac {1}{3} \, d\right )} + e^{\left (\frac {2}{3} \, b x\right )} + e^{\left (-\frac {2}{3} \, d\right )}\right ) - 55 \, \sqrt {3} e^{\left (-\frac {17}{3} \, d\right )} \log \left (-\sqrt {3} e^{\left (\frac {1}{3} \, b x - \frac {1}{3} \, d\right )} + e^{\left (\frac {2}{3} \, b x\right )} + e^{\left (-\frac {2}{3} \, d\right )}\right ) - 110 \, \arctan \left ({\left (\sqrt {3} e^{\left (-\frac {1}{3} \, d\right )} + 2 \, e^{\left (\frac {1}{3} \, b x\right )}\right )} e^{\left (\frac {1}{3} \, d\right )}\right ) e^{\left (-\frac {17}{3} \, d\right )} - 110 \, \arctan \left (-{\left (\sqrt {3} e^{\left (-\frac {1}{3} \, d\right )} - 2 \, e^{\left (\frac {1}{3} \, b x\right )}\right )} e^{\left (\frac {1}{3} \, d\right )}\right ) e^{\left (-\frac {17}{3} \, d\right )} - 220 \, \arctan \left (e^{\left (\frac {1}{3} \, b x + \frac {1}{3} \, d\right )}\right ) e^{\left (-\frac {17}{3} \, d\right )} + \frac {12 \, {\left (11 \, e^{\left (\frac {5}{3} \, b x\right )} - 55 \, e^{\left (\frac {17}{3} \, b x + 4 \, d\right )} + 28 \, e^{\left (\frac {11}{3} \, b x + 2 \, d\right )}\right )} e^{\left (-4 \, d\right )}}{{\left (e^{\left (2 \, b x + 2 \, d\right )} + 1\right )}^{3}}\right )} e^{\left (\frac {5}{3} \, a + 4 \, d\right )}}{324 \, b} \] Input:

integrate(exp(5/3*b*x+5/3*a)*sech(b*x+d)^4,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-1/324*(55*sqrt(3)*e^(-17/3*d)*log(sqrt(3)*e^(1/3*b*x - 1/3*d) + e^(2/3*b* 
x) + e^(-2/3*d)) - 55*sqrt(3)*e^(-17/3*d)*log(-sqrt(3)*e^(1/3*b*x - 1/3*d) 
 + e^(2/3*b*x) + e^(-2/3*d)) - 110*arctan((sqrt(3)*e^(-1/3*d) + 2*e^(1/3*b 
*x))*e^(1/3*d))*e^(-17/3*d) - 110*arctan(-(sqrt(3)*e^(-1/3*d) - 2*e^(1/3*b 
*x))*e^(1/3*d))*e^(-17/3*d) - 220*arctan(e^(1/3*b*x + 1/3*d))*e^(-17/3*d) 
+ 12*(11*e^(5/3*b*x) - 55*e^(17/3*b*x + 4*d) + 28*e^(11/3*b*x + 2*d))*e^(- 
4*d)/(e^(2*b*x + 2*d) + 1)^3)*e^(5/3*a + 4*d)/b
 

Mupad [B] (verification not implemented)

Time = 5.88 (sec) , antiderivative size = 542, normalized size of antiderivative = 1.90 \[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=\text {Too large to display} \] Input:

int(exp((5*a)/3 + (5*b*x)/3)/cosh(d + b*x)^4,x)
 

Output:

(55*(-exp(10*a - 10*d))^(1/6)*log((3025*exp((10*a)/3)*exp(-(10*d)/3))/6561 
 - (3025*exp((5*a)/3)*exp(d/3)*exp(-(5*d)/3)*exp((b*x)/3)*(-exp(10*a)*exp( 
-10*d))^(1/6))/6561))/(162*b) - (55*(-exp(10*a - 10*d))^(1/6)*log((3025*ex 
p((10*a)/3)*exp(-(10*d)/3))/6561 + (3025*exp((5*a)/3)*exp(d/3)*exp(-(5*d)/ 
3)*exp((b*x)/3)*(-exp(10*a)*exp(-10*d))^(1/6))/6561))/(162*b) + (55*exp((5 
*a)/3 + (5*b*x)/3))/(27*b*(exp(2*d + 2*b*x) + 1)) - (8*exp((5*a)/3 + 2*d + 
 (11*b*x)/3))/(3*b*(3*exp(2*d + 2*b*x) + 3*exp(4*d + 4*b*x) + exp(6*d + 6* 
b*x) + 1)) - (22*exp((5*a)/3 + (5*b*x)/3))/(9*b*(2*exp(2*d + 2*b*x) + exp( 
4*d + 4*b*x) + 1)) + (55*log((3025*exp((10*a)/3)*exp(-(10*d)/3))/6561 - (3 
025*exp((5*a)/3)*exp(d/3)*exp(-(5*d)/3)*exp((b*x)/3)*((3^(1/2)*1i)/2 - 1/2 
)*(-exp(10*a)*exp(-10*d))^(1/6))/6561)*(-exp(10*a - 10*d))^(1/6)*((3^(1/2) 
*1i)/2 - 1/2))/(162*b) - (55*log((3025*exp((10*a)/3)*exp(-(10*d)/3))/6561 
+ (3025*exp((5*a)/3)*exp(d/3)*exp(-(5*d)/3)*exp((b*x)/3)*((3^(1/2)*1i)/2 - 
 1/2)*(-exp(10*a)*exp(-10*d))^(1/6))/6561)*(-exp(10*a - 10*d))^(1/6)*((3^( 
1/2)*1i)/2 - 1/2))/(162*b) + (55*log((3025*exp((10*a)/3)*exp(-(10*d)/3))/6 
561 - (3025*exp((5*a)/3)*exp(d/3)*exp(-(5*d)/3)*exp((b*x)/3)*((3^(1/2)*1i) 
/2 + 1/2)*(-exp(10*a)*exp(-10*d))^(1/6))/6561)*(-exp(10*a - 10*d))^(1/6)*( 
(3^(1/2)*1i)/2 + 1/2))/(162*b) - (55*log((3025*exp((10*a)/3)*exp(-(10*d)/3 
))/6561 + (3025*exp((5*a)/3)*exp(d/3)*exp(-(5*d)/3)*exp((b*x)/3)*((3^(1/2) 
*1i)/2 + 1/2)*(-exp(10*a)*exp(-10*d))^(1/6))/6561)*(-exp(10*a - 10*d))^...
 

Reduce [F]

\[ \int e^{\frac {5}{3} (a+b x)} \text {sech}^4(d+b x) \, dx=\int e^{\frac {5 b x}{3}+\frac {5 a}{3}} \mathrm {sech}\left (b x +d \right )^{4}d x \] Input:

int(exp(5/3*b*x+5/3*a)*sech(b*x+d)^4,x)
 

Output:

int(e**((5*a + 5*b*x)/3)*sech(b*x + d)**4,x)