\(\int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx\) [88]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 101 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\frac {e^x}{\left (1+e^{4 x}\right )^2}-\frac {5 e^x}{4 \left (1+e^{4 x}\right )}-\frac {\arctan \left (1-\sqrt {2} e^x\right )}{8 \sqrt {2}}+\frac {\arctan \left (1+\sqrt {2} e^x\right )}{8 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} e^x}{1+e^{2 x}}\right )}{8 \sqrt {2}} \] Output:

exp(x)/(1+exp(4*x))^2-5*exp(x)/(4+4*exp(4*x))+1/16*arctan(-1+2^(1/2)*exp(x 
))*2^(1/2)+1/16*arctan(1+2^(1/2)*exp(x))*2^(1/2)+1/16*arctanh(2^(1/2)*exp( 
x)/(1+exp(2*x)))*2^(1/2)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.19 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\frac {1}{32} \left (\frac {32 e^x}{\left (1+e^{4 x}\right )^2}-\frac {40 e^x}{1+e^{4 x}}-2 \sqrt {2} \arctan \left (1-\sqrt {2} e^x\right )+2 \sqrt {2} \arctan \left (1+\sqrt {2} e^x\right )-\sqrt {2} \log \left (1-\sqrt {2} e^x+e^{2 x}\right )+\sqrt {2} \log \left (1+\sqrt {2} e^x+e^{2 x}\right )\right ) \] Input:

Integrate[E^x*Sech[2*x]^2*Tanh[2*x],x]
 

Output:

((32*E^x)/(1 + E^(4*x))^2 - (40*E^x)/(1 + E^(4*x)) - 2*Sqrt[2]*ArcTan[1 - 
Sqrt[2]*E^x] + 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*E^x] - Sqrt[2]*Log[1 - Sqrt[2] 
*E^x + E^(2*x)] + Sqrt[2]*Log[1 + Sqrt[2]*E^x + E^(2*x)])/32
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.47, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.857, Rules used = {2720, 27, 957, 817, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^x \tanh (2 x) \text {sech}^2(2 x) \, dx\)

\(\Big \downarrow \) 2720

\(\displaystyle \int -\frac {4 e^{4 x} \left (1-e^{4 x}\right )}{\left (e^{4 x}+1\right )^3}de^x\)

\(\Big \downarrow \) 27

\(\displaystyle -4 \int \frac {e^{4 x} \left (1-e^{4 x}\right )}{\left (1+e^{4 x}\right )^3}de^x\)

\(\Big \downarrow \) 957

\(\displaystyle -4 \left (\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}-\frac {1}{4} \int \frac {e^{4 x}}{\left (1+e^{4 x}\right )^2}de^x\right )\)

\(\Big \downarrow \) 817

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {e^x}{4 \left (e^{4 x}+1\right )}-\frac {1}{4} \int \frac {1}{1+e^{4 x}}de^x\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 755

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (-\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x-\frac {1}{2} \int \frac {1+e^{2 x}}{1+e^{4 x}}de^x\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (-\frac {1}{2} \int \frac {1}{1-\sqrt {2} e^x+e^{2 x}}de^x-\frac {1}{2} \int \frac {1}{1+\sqrt {2} e^x+e^{2 x}}de^x\right )-\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\int \frac {1}{-1-e^{2 x}}d\left (1+\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\int \frac {1}{-1-e^{2 x}}d\left (1-\sqrt {2} e^x\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-e^{2 x}}{1+e^{4 x}}de^x\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-2 e^x}{1-\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (1+\sqrt {2} e^x\right )}{1+\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}\right )\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-2 e^x}{1-\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (1+\sqrt {2} e^x\right )}{1+\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}\right )\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-2 e^x}{1-\sqrt {2} e^x+e^{2 x}}de^x}{2 \sqrt {2}}-\frac {1}{2} \int \frac {1+\sqrt {2} e^x}{1+\sqrt {2} e^x+e^{2 x}}de^x\right )+\frac {1}{2} \left (\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}\right )\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle -4 \left (\frac {1}{4} \left (\frac {1}{4} \left (\frac {1}{2} \left (\frac {\arctan \left (1-\sqrt {2} e^x\right )}{\sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^x+e^{2 x}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\sqrt {2} e^x+e^{2 x}+1\right )}{2 \sqrt {2}}\right )\right )+\frac {e^x}{4 \left (e^{4 x}+1\right )}\right )+\frac {e^{5 x}}{4 \left (e^{4 x}+1\right )^2}\right )\)

Input:

Int[E^x*Sech[2*x]^2*Tanh[2*x],x]
 

Output:

-4*(E^(5*x)/(4*(1 + E^(4*x))^2) + (E^x/(4*(1 + E^(4*x))) + ((ArcTan[1 - Sq 
rt[2]*E^x]/Sqrt[2] - ArcTan[1 + Sqrt[2]*E^x]/Sqrt[2])/2 + (Log[1 - Sqrt[2] 
*E^x + E^(2*x)]/(2*Sqrt[2]) - Log[1 + Sqrt[2]*E^x + E^(2*x)]/(2*Sqrt[2]))/ 
2)/4)/4)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 957
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a 
*b*e*n*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b*n* 
(p + 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, 
 m, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && N 
eQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] && LeQ[-1 
, m, (-n)*(p + 1)]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 9.87 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.44

method result size
risch \(-\frac {{\mathrm e}^{x} \left (5 \,{\mathrm e}^{4 x}+1\right )}{4 \left ({\mathrm e}^{4 x}+1\right )^{2}}+4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (16777216 \textit {\_Z}^{4}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{x}+64 \textit {\_R} \right )\right )\) \(44\)
default \(\frac {\frac {\tanh \left (\frac {x}{2}\right )^{7}}{4}-\frac {17 \tanh \left (\frac {x}{2}\right )^{6}}{4}-\frac {11 \tanh \left (\frac {x}{2}\right )^{5}}{4}-\frac {57 \tanh \left (\frac {x}{2}\right )^{4}}{4}+\frac {11 \tanh \left (\frac {x}{2}\right )^{3}}{4}-\frac {19 \tanh \left (\frac {x}{2}\right )^{2}}{4}-\frac {\tanh \left (\frac {x}{2}\right )}{4}-\frac {3}{4}}{\left (\tanh \left (\frac {x}{2}\right )^{4}+6 \tanh \left (\frac {x}{2}\right )^{2}+1\right )^{2}}+\frac {\sqrt {2}\, \ln \left (\tanh \left (\frac {x}{2}\right )^{2}+3+2 \sqrt {2}\right )}{32}+\frac {\left (2+\sqrt {2}\right ) \arctan \left (\frac {2 \tanh \left (\frac {x}{2}\right )}{2+2 \sqrt {2}}\right )}{16+16 \sqrt {2}}-\frac {\sqrt {2}\, \ln \left (\tanh \left (\frac {x}{2}\right )^{2}+3-2 \sqrt {2}\right )}{32}-\frac {\left (\sqrt {2}-2\right ) \arctan \left (\frac {2 \tanh \left (\frac {x}{2}\right )}{2 \sqrt {2}-2}\right )}{8 \left (2 \sqrt {2}-2\right )}\) \(180\)

Input:

int(exp(x)*sech(2*x)^2*tanh(2*x),x,method=_RETURNVERBOSE)
 

Output:

-1/4*exp(x)*(5*exp(4*x)+1)/(exp(4*x)+1)^2+4*sum(_R*ln(exp(x)+64*_R),_R=Roo 
tOf(16777216*_Z^4+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 854 vs. \(2 (72) = 144\).

Time = 0.09 (sec) , antiderivative size = 854, normalized size of antiderivative = 8.46 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\text {Too large to display} \] Input:

integrate(exp(x)*sech(2*x)^2*tanh(2*x),x, algorithm="fricas")
 

Output:

-1/32*(40*cosh(x)^5 + 400*cosh(x)^3*sinh(x)^2 + 400*cosh(x)^2*sinh(x)^3 + 
200*cosh(x)*sinh(x)^4 + 40*sinh(x)^5 - 2*(sqrt(2)*cosh(x)^8 + 56*sqrt(2)*c 
osh(x)^3*sinh(x)^5 + 28*sqrt(2)*cosh(x)^2*sinh(x)^6 + 8*sqrt(2)*cosh(x)*si 
nh(x)^7 + sqrt(2)*sinh(x)^8 + 2*(35*sqrt(2)*cosh(x)^4 + sqrt(2))*sinh(x)^4 
 + 2*sqrt(2)*cosh(x)^4 + 8*(7*sqrt(2)*cosh(x)^5 + sqrt(2)*cosh(x))*sinh(x) 
^3 + 4*(7*sqrt(2)*cosh(x)^6 + 3*sqrt(2)*cosh(x)^2)*sinh(x)^2 + 8*(sqrt(2)* 
cosh(x)^7 + sqrt(2)*cosh(x)^3)*sinh(x) + sqrt(2))*arctan(sqrt(2)*cosh(x) + 
 sqrt(2)*sinh(x) + 1) - 2*(sqrt(2)*cosh(x)^8 + 56*sqrt(2)*cosh(x)^3*sinh(x 
)^5 + 28*sqrt(2)*cosh(x)^2*sinh(x)^6 + 8*sqrt(2)*cosh(x)*sinh(x)^7 + sqrt( 
2)*sinh(x)^8 + 2*(35*sqrt(2)*cosh(x)^4 + sqrt(2))*sinh(x)^4 + 2*sqrt(2)*co 
sh(x)^4 + 8*(7*sqrt(2)*cosh(x)^5 + sqrt(2)*cosh(x))*sinh(x)^3 + 4*(7*sqrt( 
2)*cosh(x)^6 + 3*sqrt(2)*cosh(x)^2)*sinh(x)^2 + 8*(sqrt(2)*cosh(x)^7 + sqr 
t(2)*cosh(x)^3)*sinh(x) + sqrt(2))*arctan(sqrt(2)*cosh(x) + sqrt(2)*sinh(x 
) - 1) - (sqrt(2)*cosh(x)^8 + 56*sqrt(2)*cosh(x)^3*sinh(x)^5 + 28*sqrt(2)* 
cosh(x)^2*sinh(x)^6 + 8*sqrt(2)*cosh(x)*sinh(x)^7 + sqrt(2)*sinh(x)^8 + 2* 
(35*sqrt(2)*cosh(x)^4 + sqrt(2))*sinh(x)^4 + 2*sqrt(2)*cosh(x)^4 + 8*(7*sq 
rt(2)*cosh(x)^5 + sqrt(2)*cosh(x))*sinh(x)^3 + 4*(7*sqrt(2)*cosh(x)^6 + 3* 
sqrt(2)*cosh(x)^2)*sinh(x)^2 + 8*(sqrt(2)*cosh(x)^7 + sqrt(2)*cosh(x)^3)*s 
inh(x) + sqrt(2))*log((sqrt(2) + 2*cosh(x))/(cosh(x) - sinh(x))) + (sqrt(2 
)*cosh(x)^8 + 56*sqrt(2)*cosh(x)^3*sinh(x)^5 + 28*sqrt(2)*cosh(x)^2*sin...
 

Sympy [F]

\[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\int e^{x} \tanh {\left (2 x \right )} \operatorname {sech}^{2}{\left (2 x \right )}\, dx \] Input:

integrate(exp(x)*sech(2*x)**2*tanh(2*x),x)
 

Output:

Integral(exp(x)*tanh(2*x)*sech(2*x)**2, x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\frac {1}{16} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) + \frac {1}{16} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) + \frac {1}{32} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {1}{32} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {5 \, e^{\left (5 \, x\right )} + e^{x}}{4 \, {\left (e^{\left (8 \, x\right )} + 2 \, e^{\left (4 \, x\right )} + 1\right )}} \] Input:

integrate(exp(x)*sech(2*x)^2*tanh(2*x),x, algorithm="maxima")
 

Output:

1/16*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) + 1/16*sqrt(2)*arctan(- 
1/2*sqrt(2)*(sqrt(2) - 2*e^x)) + 1/32*sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 
1) - 1/32*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) - 1/4*(5*e^(5*x) + e^x)/ 
(e^(8*x) + 2*e^(4*x) + 1)
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.94 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\frac {1}{16} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) + \frac {1}{16} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) + \frac {1}{32} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {1}{32} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {5 \, e^{\left (5 \, x\right )} + e^{x}}{4 \, {\left (e^{\left (4 \, x\right )} + 1\right )}^{2}} \] Input:

integrate(exp(x)*sech(2*x)^2*tanh(2*x),x, algorithm="giac")
 

Output:

1/16*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) + 1/16*sqrt(2)*arctan(- 
1/2*sqrt(2)*(sqrt(2) - 2*e^x)) + 1/32*sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 
1) - 1/32*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) - 1/4*(5*e^(5*x) + e^x)/ 
(e^(4*x) + 1)^2
 

Mupad [B] (verification not implemented)

Time = 2.81 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.21 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=-\frac {\frac {{\mathrm {e}}^{5\,x}}{2}-\frac {{\mathrm {e}}^x}{2}}{2\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^{8\,x}+1}-\frac {3\,{\mathrm {e}}^x}{4\,\left ({\mathrm {e}}^{4\,x}+1\right )}+\sqrt {2}\,\ln \left (-\frac {{\mathrm {e}}^x}{4}+\sqrt {2}\,\left (-\frac {1}{8}-\frac {1}{8}{}\mathrm {i}\right )\right )\,\left (\frac {1}{32}+\frac {1}{32}{}\mathrm {i}\right )+\sqrt {2}\,\ln \left (-\frac {{\mathrm {e}}^x}{4}+\sqrt {2}\,\left (-\frac {1}{8}+\frac {1}{8}{}\mathrm {i}\right )\right )\,\left (\frac {1}{32}-\frac {1}{32}{}\mathrm {i}\right )+\sqrt {2}\,\ln \left (-\frac {{\mathrm {e}}^x}{4}+\sqrt {2}\,\left (\frac {1}{8}-\frac {1}{8}{}\mathrm {i}\right )\right )\,\left (-\frac {1}{32}+\frac {1}{32}{}\mathrm {i}\right )+\sqrt {2}\,\ln \left (-\frac {{\mathrm {e}}^x}{4}+\sqrt {2}\,\left (\frac {1}{8}+\frac {1}{8}{}\mathrm {i}\right )\right )\,\left (-\frac {1}{32}-\frac {1}{32}{}\mathrm {i}\right ) \] Input:

int((tanh(2*x)*exp(x))/cosh(2*x)^2,x)
 

Output:

2^(1/2)*log(- exp(x)/4 - 2^(1/2)*(1/8 + 1i/8))*(1/32 + 1i/32) - (3*exp(x)) 
/(4*(exp(4*x) + 1)) - (exp(5*x)/2 - exp(x)/2)/(2*exp(4*x) + exp(8*x) + 1) 
+ 2^(1/2)*log(- exp(x)/4 - 2^(1/2)*(1/8 - 1i/8))*(1/32 - 1i/32) - 2^(1/2)* 
log(2^(1/2)*(1/8 - 1i/8) - exp(x)/4)*(1/32 - 1i/32) - 2^(1/2)*log(2^(1/2)* 
(1/8 + 1i/8) - exp(x)/4)*(1/32 + 1i/32)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 295, normalized size of antiderivative = 2.92 \[ \int e^x \text {sech}^2(2 x) \tanh (2 x) \, dx=\frac {2 e^{8 x} \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}-\sqrt {2}}{\sqrt {2}}\right )+4 e^{4 x} \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}-\sqrt {2}}{\sqrt {2}}\right )+2 \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}-\sqrt {2}}{\sqrt {2}}\right )+2 e^{8 x} \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}+\sqrt {2}}{\sqrt {2}}\right )+4 e^{4 x} \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}+\sqrt {2}}{\sqrt {2}}\right )+2 \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}+\sqrt {2}}{\sqrt {2}}\right )-e^{8 x} \sqrt {2}\, \mathrm {log}\left (e^{2 x}-e^{x} \sqrt {2}+1\right )+e^{8 x} \sqrt {2}\, \mathrm {log}\left (e^{2 x}+e^{x} \sqrt {2}+1\right )-40 e^{5 x}-2 e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{2 x}-e^{x} \sqrt {2}+1\right )+2 e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{2 x}+e^{x} \sqrt {2}+1\right )-8 e^{x}-\sqrt {2}\, \mathrm {log}\left (e^{2 x}-e^{x} \sqrt {2}+1\right )+\sqrt {2}\, \mathrm {log}\left (e^{2 x}+e^{x} \sqrt {2}+1\right )}{32 e^{8 x}+64 e^{4 x}+32} \] Input:

int(exp(x)*sech(2*x)^2*tanh(2*x),x)
 

Output:

(2*e**(8*x)*sqrt(2)*atan((2*e**x - sqrt(2))/sqrt(2)) + 4*e**(4*x)*sqrt(2)* 
atan((2*e**x - sqrt(2))/sqrt(2)) + 2*sqrt(2)*atan((2*e**x - sqrt(2))/sqrt( 
2)) + 2*e**(8*x)*sqrt(2)*atan((2*e**x + sqrt(2))/sqrt(2)) + 4*e**(4*x)*sqr 
t(2)*atan((2*e**x + sqrt(2))/sqrt(2)) + 2*sqrt(2)*atan((2*e**x + sqrt(2))/ 
sqrt(2)) - e**(8*x)*sqrt(2)*log(e**(2*x) - e**x*sqrt(2) + 1) + e**(8*x)*sq 
rt(2)*log(e**(2*x) + e**x*sqrt(2) + 1) - 40*e**(5*x) - 2*e**(4*x)*sqrt(2)* 
log(e**(2*x) - e**x*sqrt(2) + 1) + 2*e**(4*x)*sqrt(2)*log(e**(2*x) + e**x* 
sqrt(2) + 1) - 8*e**x - sqrt(2)*log(e**(2*x) - e**x*sqrt(2) + 1) + sqrt(2) 
*log(e**(2*x) + e**x*sqrt(2) + 1))/(32*(e**(8*x) + 2*e**(4*x) + 1))