\(\int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx\) [525]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 156 \[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=-\frac {2 (c \cosh (x)+b \sinh (x))}{\left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}-\frac {2 i E\left (\frac {1}{2} \left (i x-\tan ^{-1}(b,-i c)\right )|\frac {2 \sqrt {b^2-c^2}}{a+\sqrt {b^2-c^2}}\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}{\left (a^2-b^2+c^2\right ) \sqrt {\frac {a+b \cosh (x)+c \sinh (x)}{a+\sqrt {b^2-c^2}}}} \] Output:

(-2*c*cosh(x)-2*b*sinh(x))/(a^2-b^2+c^2)/(a+b*cosh(x)+c*sinh(x))^(1/2)-2*I 
*EllipticE(sin(1/2*I*x-1/2*arctan(-I*c,b)),2^(1/2)*((b^2-c^2)^(1/2)/(a+(b^ 
2-c^2)^(1/2)))^(1/2))*(a+b*cosh(x)+c*sinh(x))^(1/2)/(a^2-b^2+c^2)/((a+b*co 
sh(x)+c*sinh(x))/(a+(b^2-c^2)^(1/2)))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 4.88 (sec) , antiderivative size = 806, normalized size of antiderivative = 5.17 \[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=\frac {2 \left (a b+\left (b^2-c^2\right ) \cosh (x)\right )-\frac {2 b^3 (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}+\frac {2 a \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{2},\frac {3}{2},\frac {a+b \cosh (x)+c \sinh (x)}{a+i \sqrt {1-\frac {b^2}{c^2}} c},\frac {a+b \cosh (x)+c \sinh (x)}{a-i \sqrt {1-\frac {b^2}{c^2}} c}\right ) \text {sech}\left (x+\text {arctanh}\left (\frac {b}{c}\right )\right ) (a+b \cosh (x)+c \sinh (x)) \sqrt {-\frac {-i \sqrt {1-\frac {b^2}{c^2}} c+b \cosh (x)+c \sinh (x)}{a+i \sqrt {1-\frac {b^2}{c^2}} c}} \sqrt {-\frac {i \sqrt {1-\frac {b^2}{c^2}} c+b \cosh (x)+c \sinh (x)}{a-i \sqrt {1-\frac {b^2}{c^2}} c}}}{\sqrt {1-\frac {b^2}{c^2}}}+\frac {b c \sinh \left (x+\text {arctanh}\left (\frac {c}{b}\right )\right )}{\sqrt {1-\frac {c^2}{b^2}}}-\frac {b c \operatorname {AppellF1}\left (-\frac {1}{2},-\frac {1}{2},-\frac {1}{2},\frac {1}{2},\frac {a+b \cosh (x)+c \sinh (x)}{a+b \sqrt {1-\frac {c^2}{b^2}}},\frac {a+b \cosh (x)+c \sinh (x)}{a-b \sqrt {1-\frac {c^2}{b^2}}}\right ) \sinh \left (x+\text {arctanh}\left (\frac {c}{b}\right )\right )}{\sqrt {1-\frac {c^2}{b^2}} \sqrt {\frac {b \sqrt {1-\frac {c^2}{b^2}}-b \cosh (x)-c \sinh (x)}{a+b \sqrt {1-\frac {c^2}{b^2}}}} \sqrt {\frac {b \sqrt {1-\frac {c^2}{b^2}}+b \cosh (x)+c \sinh (x)}{-a+b \sqrt {1-\frac {c^2}{b^2}}}}}+\frac {c^2 \left (\frac {2 b^2 (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}-\frac {c \sinh \left (x+\text {arctanh}\left (\frac {c}{b}\right )\right )}{\sqrt {1-\frac {c^2}{b^2}}}+\frac {c \operatorname {AppellF1}\left (-\frac {1}{2},-\frac {1}{2},-\frac {1}{2},\frac {1}{2},\frac {a+b \cosh (x)+c \sinh (x)}{a+b \sqrt {1-\frac {c^2}{b^2}}},\frac {a+b \cosh (x)+c \sinh (x)}{a-b \sqrt {1-\frac {c^2}{b^2}}}\right ) \sinh \left (x+\text {arctanh}\left (\frac {c}{b}\right )\right )}{\sqrt {1-\frac {c^2}{b^2}} \sqrt {\frac {b \sqrt {1-\frac {c^2}{b^2}}-b \cosh (x)-c \sinh (x)}{a+b \sqrt {1-\frac {c^2}{b^2}}}} \sqrt {\frac {b \sqrt {1-\frac {c^2}{b^2}}+b \cosh (x)+c \sinh (x)}{-a+b \sqrt {1-\frac {c^2}{b^2}}}}}\right )}{b}}{c \left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}} \] Input:

Integrate[(a + b*Cosh[x] + c*Sinh[x])^(-3/2),x]
 

Output:

(2*(a*b + (b^2 - c^2)*Cosh[x]) - (2*b^3*(a + b*Cosh[x] + c*Sinh[x]))/(b^2 
- c^2) + (2*a*AppellF1[1/2, 1/2, 1/2, 3/2, (a + b*Cosh[x] + c*Sinh[x])/(a 
+ I*Sqrt[1 - b^2/c^2]*c), (a + b*Cosh[x] + c*Sinh[x])/(a - I*Sqrt[1 - b^2/ 
c^2]*c)]*Sech[x + ArcTanh[b/c]]*(a + b*Cosh[x] + c*Sinh[x])*Sqrt[-(((-I)*S 
qrt[1 - b^2/c^2]*c + b*Cosh[x] + c*Sinh[x])/(a + I*Sqrt[1 - b^2/c^2]*c))]* 
Sqrt[-((I*Sqrt[1 - b^2/c^2]*c + b*Cosh[x] + c*Sinh[x])/(a - I*Sqrt[1 - b^2 
/c^2]*c))])/Sqrt[1 - b^2/c^2] + (b*c*Sinh[x + ArcTanh[c/b]])/Sqrt[1 - c^2/ 
b^2] - (b*c*AppellF1[-1/2, -1/2, -1/2, 1/2, (a + b*Cosh[x] + c*Sinh[x])/(a 
 + b*Sqrt[1 - c^2/b^2]), (a + b*Cosh[x] + c*Sinh[x])/(a - b*Sqrt[1 - c^2/b 
^2])]*Sinh[x + ArcTanh[c/b]])/(Sqrt[1 - c^2/b^2]*Sqrt[(b*Sqrt[1 - c^2/b^2] 
 - b*Cosh[x] - c*Sinh[x])/(a + b*Sqrt[1 - c^2/b^2])]*Sqrt[(b*Sqrt[1 - c^2/ 
b^2] + b*Cosh[x] + c*Sinh[x])/(-a + b*Sqrt[1 - c^2/b^2])]) + (c^2*((2*b^2* 
(a + b*Cosh[x] + c*Sinh[x]))/(b^2 - c^2) - (c*Sinh[x + ArcTanh[c/b]])/Sqrt 
[1 - c^2/b^2] + (c*AppellF1[-1/2, -1/2, -1/2, 1/2, (a + b*Cosh[x] + c*Sinh 
[x])/(a + b*Sqrt[1 - c^2/b^2]), (a + b*Cosh[x] + c*Sinh[x])/(a - b*Sqrt[1 
- c^2/b^2])]*Sinh[x + ArcTanh[c/b]])/(Sqrt[1 - c^2/b^2]*Sqrt[(b*Sqrt[1 - c 
^2/b^2] - b*Cosh[x] - c*Sinh[x])/(a + b*Sqrt[1 - c^2/b^2])]*Sqrt[(b*Sqrt[1 
 - c^2/b^2] + b*Cosh[x] + c*Sinh[x])/(-a + b*Sqrt[1 - c^2/b^2])])))/b)/(c* 
(a^2 - b^2 + c^2)*Sqrt[a + b*Cosh[x] + c*Sinh[x]])
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3607, 3042, 3598, 3042, 3132}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a+b \cos (i x)-i c \sin (i x))^{3/2}}dx\)

\(\Big \downarrow \) 3607

\(\displaystyle \frac {\int \sqrt {a+b \cosh (x)+c \sinh (x)}dx}{a^2-b^2+c^2}-\frac {2 (b \sinh (x)+c \cosh (x))}{\left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 (b \sinh (x)+c \cosh (x))}{\left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}+\frac {\int \sqrt {a+b \cos (i x)-i c \sin (i x)}dx}{a^2-b^2+c^2}\)

\(\Big \downarrow \) 3598

\(\displaystyle -\frac {2 (b \sinh (x)+c \cosh (x))}{\left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}+\frac {\sqrt {a+b \cosh (x)+c \sinh (x)} \int \sqrt {\frac {a}{a+\sqrt {b^2-c^2}}+\frac {\sqrt {b^2-c^2} \cosh \left (x+i \tan ^{-1}(b,-i c)\right )}{a+\sqrt {b^2-c^2}}}dx}{\left (a^2-b^2+c^2\right ) \sqrt {\frac {a+b \cosh (x)+c \sinh (x)}{a+\sqrt {b^2-c^2}}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 (b \sinh (x)+c \cosh (x))}{\left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}+\frac {\sqrt {a+b \cosh (x)+c \sinh (x)} \int \sqrt {\frac {a}{a+\sqrt {b^2-c^2}}+\frac {\sqrt {b^2-c^2} \sin \left (i x-\tan ^{-1}(b,-i c)+\frac {\pi }{2}\right )}{a+\sqrt {b^2-c^2}}}dx}{\left (a^2-b^2+c^2\right ) \sqrt {\frac {a+b \cosh (x)+c \sinh (x)}{a+\sqrt {b^2-c^2}}}}\)

\(\Big \downarrow \) 3132

\(\displaystyle -\frac {2 (b \sinh (x)+c \cosh (x))}{\left (a^2-b^2+c^2\right ) \sqrt {a+b \cosh (x)+c \sinh (x)}}-\frac {2 i \sqrt {a+b \cosh (x)+c \sinh (x)} E\left (\frac {1}{2} \left (i x-\tan ^{-1}(b,-i c)\right )|\frac {2 \sqrt {b^2-c^2}}{a+\sqrt {b^2-c^2}}\right )}{\left (a^2-b^2+c^2\right ) \sqrt {\frac {a+b \cosh (x)+c \sinh (x)}{a+\sqrt {b^2-c^2}}}}\)

Input:

Int[(a + b*Cosh[x] + c*Sinh[x])^(-3/2),x]
 

Output:

(-2*(c*Cosh[x] + b*Sinh[x]))/((a^2 - b^2 + c^2)*Sqrt[a + b*Cosh[x] + c*Sin 
h[x]]) - ((2*I)*EllipticE[(I*x - ArcTan[b, (-I)*c])/2, (2*Sqrt[b^2 - c^2]) 
/(a + Sqrt[b^2 - c^2])]*Sqrt[a + b*Cosh[x] + c*Sinh[x]])/((a^2 - b^2 + c^2 
)*Sqrt[(a + b*Cosh[x] + c*Sinh[x])/(a + Sqrt[b^2 - c^2])])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3598
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_ 
)]], x_Symbol] :> Simp[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + 
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]   Int[Sqrt[a/(a + S 
qrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - Arc 
Tan[b, c]]], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] 
 && NeQ[b^2 + c^2, 0] &&  !GtQ[a + Sqrt[b^2 + c^2], 0]
 

rule 3607
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(-3/2), x_Symbol] :> Simp[2*((c*Cos[d + e*x] - b*Sin[d + e*x])/(e*(a^2 - b^ 
2 - c^2)*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])), x] + Simp[1/(a^2 - b^ 
2 - c^2)   Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{ 
a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(867\) vs. \(2(144)=288\).

Time = 0.20 (sec) , antiderivative size = 868, normalized size of antiderivative = 5.56

method result size
default \(\frac {\sqrt {b^{2}-c^{2}}\, \operatorname {arctanh}\left (\frac {\left (b^{2}-c^{2}\right ) \cosh \left (x \right )}{\sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b^{2}-c^{2}\right )}}\right )}{\sqrt {\frac {-b^{2} \sinh \left (x \right )+\sinh \left (x \right ) c^{2}+a \sqrt {b^{2}-c^{2}}}{\sqrt {b^{2}-c^{2}}}}\, \sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b^{2}-c^{2}\right )}}-\frac {\sqrt {\frac {\left (-b^{2} \sinh \left (x \right )+\sinh \left (x \right ) c^{2}+a \sqrt {b^{2}-c^{2}}\right ) \sinh \left (x \right )^{2}}{\sqrt {b^{2}-c^{2}}}}\, a \left (\frac {\ln \left (\frac {-\frac {2 \left (\sqrt {b^{2}-c^{2}}\, \sinh \left (x \right )-a \right ) a^{2}}{b^{2}-c^{2}}+\frac {2 \left (b^{2} \sinh \left (x \right )-\sinh \left (x \right ) c^{2}-a \sqrt {b^{2}-c^{2}}\right ) \sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}\, \left (\cosh \left (x \right )+\frac {\sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}}{b^{2}-c^{2}}\right )}{\left (b^{2}-c^{2}\right )^{\frac {3}{2}}}+2 \sqrt {\frac {\left (-\sqrt {b^{2}-c^{2}}\, \sinh \left (x \right )+a \right ) a^{2}}{b^{2}-c^{2}}}\, \sqrt {\frac {\left (-b^{2} \sinh \left (x \right )+\sinh \left (x \right ) c^{2}+a \sqrt {b^{2}-c^{2}}\right ) \sinh \left (x \right )^{2}}{\sqrt {b^{2}-c^{2}}}}}{\cosh \left (x \right )+\frac {\sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}}{b^{2}-c^{2}}}\right )}{2 \sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}\, \sqrt {\frac {\left (-\sqrt {b^{2}-c^{2}}\, \sinh \left (x \right )+a \right ) a^{2}}{b^{2}-c^{2}}}}+\frac {\left (b^{2}-c^{2}\right ) \ln \left (\frac {-\frac {2 \left (\sqrt {b^{2}-c^{2}}\, \sinh \left (x \right )-a \right ) a^{2}}{b^{2}-c^{2}}-\frac {2 \left (b^{2} \sinh \left (x \right )-\sinh \left (x \right ) c^{2}-a \sqrt {b^{2}-c^{2}}\right ) \sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}\, \left (\cosh \left (x \right )+\frac {\sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}}{-b^{2}+c^{2}}\right )}{\left (b^{2}-c^{2}\right )^{\frac {3}{2}}}+2 \sqrt {\frac {\left (-\sqrt {b^{2}-c^{2}}\, \sinh \left (x \right )+a \right ) a^{2}}{b^{2}-c^{2}}}\, \sqrt {\frac {\left (-b^{2} \sinh \left (x \right )+\sinh \left (x \right ) c^{2}+a \sqrt {b^{2}-c^{2}}\right ) \sinh \left (x \right )^{2}}{\sqrt {b^{2}-c^{2}}}}}{\cosh \left (x \right )+\frac {\sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}}{-b^{2}+c^{2}}}\right )}{2 \sqrt {\left (a^{2}+b^{2}-c^{2}\right ) \left (b -c \right ) \left (b +c \right )}\, \left (-b^{2}+c^{2}\right ) \sqrt {\frac {\left (-\sqrt {b^{2}-c^{2}}\, \sinh \left (x \right )+a \right ) a^{2}}{b^{2}-c^{2}}}}\right )}{\sinh \left (x \right ) \sqrt {\frac {-b^{2} \sinh \left (x \right )+\sinh \left (x \right ) c^{2}+a \sqrt {b^{2}-c^{2}}}{\sqrt {b^{2}-c^{2}}}}}\) \(868\)

Input:

int(1/(a+b*cosh(x)+c*sinh(x))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/((-b^2*sinh(x)+sinh(x)*c^2+a*(b^2-c^2)^(1/2))/(b^2-c^2)^(1/2))^(1/2)*(b^ 
2-c^2)^(1/2)/((a^2+b^2-c^2)*(b^2-c^2))^(1/2)*arctanh((b^2-c^2)*cosh(x)/((a 
^2+b^2-c^2)*(b^2-c^2))^(1/2))-((-b^2*sinh(x)+sinh(x)*c^2+a*(b^2-c^2)^(1/2) 
)/(b^2-c^2)^(1/2)*sinh(x)^2)^(1/2)*a*(1/2/((a^2+b^2-c^2)*(b-c)*(b+c))^(1/2 
)/((-(b^2-c^2)^(1/2)*sinh(x)+a)*a^2/(b^2-c^2))^(1/2)*ln((-2*((b^2-c^2)^(1/ 
2)*sinh(x)-a)*a^2/(b^2-c^2)+2*(b^2*sinh(x)-sinh(x)*c^2-a*(b^2-c^2)^(1/2))/ 
(b^2-c^2)^(3/2)*((a^2+b^2-c^2)*(b-c)*(b+c))^(1/2)*(cosh(x)+((a^2+b^2-c^2)* 
(b-c)*(b+c))^(1/2)/(b^2-c^2))+2*((-(b^2-c^2)^(1/2)*sinh(x)+a)*a^2/(b^2-c^2 
))^(1/2)*((-b^2*sinh(x)+sinh(x)*c^2+a*(b^2-c^2)^(1/2))/(b^2-c^2)^(1/2)*sin 
h(x)^2)^(1/2))/(cosh(x)+((a^2+b^2-c^2)*(b-c)*(b+c))^(1/2)/(b^2-c^2)))+1/2* 
(b^2-c^2)/((a^2+b^2-c^2)*(b-c)*(b+c))^(1/2)/(-b^2+c^2)/((-(b^2-c^2)^(1/2)* 
sinh(x)+a)*a^2/(b^2-c^2))^(1/2)*ln((-2*((b^2-c^2)^(1/2)*sinh(x)-a)*a^2/(b^ 
2-c^2)-2*(b^2*sinh(x)-sinh(x)*c^2-a*(b^2-c^2)^(1/2))/(b^2-c^2)^(3/2)*((a^2 
+b^2-c^2)*(b-c)*(b+c))^(1/2)*(cosh(x)+((a^2+b^2-c^2)*(b-c)*(b+c))^(1/2)/(- 
b^2+c^2))+2*((-(b^2-c^2)^(1/2)*sinh(x)+a)*a^2/(b^2-c^2))^(1/2)*((-b^2*sinh 
(x)+sinh(x)*c^2+a*(b^2-c^2)^(1/2))/(b^2-c^2)^(1/2)*sinh(x)^2)^(1/2))/(cosh 
(x)+((a^2+b^2-c^2)*(b-c)*(b+c))^(1/2)/(-b^2+c^2))))/sinh(x)/((-b^2*sinh(x) 
+sinh(x)*c^2+a*(b^2-c^2)^(1/2))/(b^2-c^2)^(1/2))^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 763 vs. \(2 (143) = 286\).

Time = 0.12 (sec) , antiderivative size = 763, normalized size of antiderivative = 4.89 \[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(1/(a+b*cosh(x)+c*sinh(x))^(3/2),x, algorithm="fricas")
 

Output:

4/3*((2*a^2*cosh(x) + (a*b + a*c)*cosh(x)^2 + (a*b + a*c)*sinh(x)^2 + a*b 
- a*c + 2*(a^2 + (a*b + a*c)*cosh(x))*sinh(x))*sqrt(1/2*b + 1/2*c)*weierst 
rassPInverse(4/3*(4*a^2 - 3*b^2 + 3*c^2)/(b^2 + 2*b*c + c^2), -8/27*(8*a^3 
 - 9*a*b^2 + 9*a*c^2)/(b^3 + 3*b^2*c + 3*b*c^2 + c^3), 1/3*(3*(b + c)*cosh 
(x) + 3*(b + c)*sinh(x) + 2*a)/(b + c)) - 3*((b^2 + 2*b*c + c^2)*cosh(x)^2 
 + (b^2 + 2*b*c + c^2)*sinh(x)^2 + b^2 - c^2 + 2*(a*b + a*c)*cosh(x) + 2*( 
a*b + a*c + (b^2 + 2*b*c + c^2)*cosh(x))*sinh(x))*sqrt(1/2*b + 1/2*c)*weie 
rstrassZeta(4/3*(4*a^2 - 3*b^2 + 3*c^2)/(b^2 + 2*b*c + c^2), -8/27*(8*a^3 
- 9*a*b^2 + 9*a*c^2)/(b^3 + 3*b^2*c + 3*b*c^2 + c^3), weierstrassPInverse( 
4/3*(4*a^2 - 3*b^2 + 3*c^2)/(b^2 + 2*b*c + c^2), -8/27*(8*a^3 - 9*a*b^2 + 
9*a*c^2)/(b^3 + 3*b^2*c + 3*b*c^2 + c^3), 1/3*(3*(b + c)*cosh(x) + 3*(b + 
c)*sinh(x) + 2*a)/(b + c))) - 3*((b^2 + 2*b*c + c^2)*cosh(x)^2 + (b^2 + 2* 
b*c + c^2)*sinh(x)^2 + (a*b + a*c)*cosh(x) + (a*b + a*c + 2*(b^2 + 2*b*c + 
 c^2)*cosh(x))*sinh(x))*sqrt(b*cosh(x) + c*sinh(x) + a))/(a^2*b^2 - b^4 - 
c^4 - (a^2 - 2*b^2)*c^2 + (a^2*b^2 - b^4 + a^2*c^2 + 2*b*c^3 + c^4 + 2*(a^ 
2*b - b^3)*c)*cosh(x)^2 + (a^2*b^2 - b^4 + a^2*c^2 + 2*b*c^3 + c^4 + 2*(a^ 
2*b - b^3)*c)*sinh(x)^2 + 2*(a^3*b - a*b^3 + a*b*c^2 + a*c^3 + (a^3 - a*b^ 
2)*c)*cosh(x) + 2*(a^3*b - a*b^3 + a*b*c^2 + a*c^3 + (a^3 - a*b^2)*c + (a^ 
2*b^2 - b^4 + a^2*c^2 + 2*b*c^3 + c^4 + 2*(a^2*b - b^3)*c)*cosh(x))*sinh(x 
))
 

Sympy [F]

\[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \cosh {\left (x \right )} + c \sinh {\left (x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(a+b*cosh(x)+c*sinh(x))**(3/2),x)
 

Output:

Integral((a + b*cosh(x) + c*sinh(x))**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \cosh \left (x\right ) + c \sinh \left (x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cosh(x)+c*sinh(x))^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*cosh(x) + c*sinh(x) + a)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \cosh \left (x\right ) + c \sinh \left (x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*cosh(x)+c*sinh(x))^(3/2),x, algorithm="giac")
 

Output:

integrate((b*cosh(x) + c*sinh(x) + a)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {cosh}\left (x\right )+c\,\mathrm {sinh}\left (x\right )\right )}^{3/2}} \,d x \] Input:

int(1/(a + b*cosh(x) + c*sinh(x))^(3/2),x)
 

Output:

int(1/(a + b*cosh(x) + c*sinh(x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cosh (x)+c \sinh (x))^{3/2}} \, dx=\int \frac {\sqrt {a +\cosh \left (x \right ) b +\sinh \left (x \right ) c}}{\cosh \left (x \right )^{2} b^{2}+2 \cosh \left (x \right ) \sinh \left (x \right ) b c +2 \cosh \left (x \right ) a b +\sinh \left (x \right )^{2} c^{2}+2 \sinh \left (x \right ) a c +a^{2}}d x \] Input:

int(1/(a+b*cosh(x)+c*sinh(x))^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(cosh(x)*b + sinh(x)*c + a)/(cosh(x)**2*b**2 + 2*cosh(x)*sinh(x)*b 
*c + 2*cosh(x)*a*b + sinh(x)**2*c**2 + 2*sinh(x)*a*c + a**2),x)