\(\int x^3 (d+c^2 d x^2)^{3/2} (a+b \text {arcsinh}(c x)) \, dx\) [137]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 217 \[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\frac {2 b d x \sqrt {d+c^2 d x^2}}{35 c^3 \sqrt {1+c^2 x^2}}-\frac {b d x^3 \sqrt {d+c^2 d x^2}}{105 c \sqrt {1+c^2 x^2}}-\frac {8 b c d x^5 \sqrt {d+c^2 d x^2}}{175 \sqrt {1+c^2 x^2}}-\frac {b c^3 d x^7 \sqrt {d+c^2 d x^2}}{49 \sqrt {1+c^2 x^2}}-\frac {\left (d+c^2 d x^2\right )^{5/2} (a+b \text {arcsinh}(c x))}{5 c^4 d}+\frac {\left (d+c^2 d x^2\right )^{7/2} (a+b \text {arcsinh}(c x))}{7 c^4 d^2} \] Output:

2/35*b*d*x*(c^2*d*x^2+d)^(1/2)/c^3/(c^2*x^2+1)^(1/2)-1/105*b*d*x^3*(c^2*d* 
x^2+d)^(1/2)/c/(c^2*x^2+1)^(1/2)-8/175*b*c*d*x^5*(c^2*d*x^2+d)^(1/2)/(c^2* 
x^2+1)^(1/2)-1/49*b*c^3*d*x^7*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-1/5*(c 
^2*d*x^2+d)^(5/2)*(a+b*arcsinh(c*x))/c^4/d+1/7*(c^2*d*x^2+d)^(7/2)*(a+b*ar 
csinh(c*x))/c^4/d^2
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.60 \[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\frac {d \sqrt {d+c^2 d x^2} \left (105 a \left (1+c^2 x^2\right )^3 \left (-2+5 c^2 x^2\right )-b c x \sqrt {1+c^2 x^2} \left (-210+35 c^2 x^2+168 c^4 x^4+75 c^6 x^6\right )+105 b \left (1+c^2 x^2\right )^3 \left (-2+5 c^2 x^2\right ) \text {arcsinh}(c x)\right )}{3675 c^4 \left (1+c^2 x^2\right )} \] Input:

Integrate[x^3*(d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]),x]
 

Output:

(d*Sqrt[d + c^2*d*x^2]*(105*a*(1 + c^2*x^2)^3*(-2 + 5*c^2*x^2) - b*c*x*Sqr 
t[1 + c^2*x^2]*(-210 + 35*c^2*x^2 + 168*c^4*x^4 + 75*c^6*x^6) + 105*b*(1 + 
 c^2*x^2)^3*(-2 + 5*c^2*x^2)*ArcSinh[c*x]))/(3675*c^4*(1 + c^2*x^2))
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.62, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {6219, 27, 290, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \left (c^2 d x^2+d\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx\)

\(\Big \downarrow \) 6219

\(\displaystyle -\frac {b c \sqrt {c^2 d x^2+d} \int -\frac {d \left (2-5 c^2 x^2\right ) \left (c^2 x^2+1\right )^2}{35 c^4}dx}{\sqrt {c^2 x^2+1}}+\frac {\left (c^2 d x^2+d\right )^{7/2} (a+b \text {arcsinh}(c x))}{7 c^4 d^2}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{5 c^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b d \sqrt {c^2 d x^2+d} \int \left (2-5 c^2 x^2\right ) \left (c^2 x^2+1\right )^2dx}{35 c^3 \sqrt {c^2 x^2+1}}+\frac {\left (c^2 d x^2+d\right )^{7/2} (a+b \text {arcsinh}(c x))}{7 c^4 d^2}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{5 c^4 d}\)

\(\Big \downarrow \) 290

\(\displaystyle \frac {b d \sqrt {c^2 d x^2+d} \int \left (-5 c^6 x^6-8 c^4 x^4-c^2 x^2+2\right )dx}{35 c^3 \sqrt {c^2 x^2+1}}+\frac {\left (c^2 d x^2+d\right )^{7/2} (a+b \text {arcsinh}(c x))}{7 c^4 d^2}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{5 c^4 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (c^2 d x^2+d\right )^{7/2} (a+b \text {arcsinh}(c x))}{7 c^4 d^2}-\frac {\left (c^2 d x^2+d\right )^{5/2} (a+b \text {arcsinh}(c x))}{5 c^4 d}+\frac {b d \left (-\frac {5}{7} c^6 x^7-\frac {8 c^4 x^5}{5}-\frac {c^2 x^3}{3}+2 x\right ) \sqrt {c^2 d x^2+d}}{35 c^3 \sqrt {c^2 x^2+1}}\)

Input:

Int[x^3*(d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x]),x]
 

Output:

(b*d*Sqrt[d + c^2*d*x^2]*(2*x - (c^2*x^3)/3 - (8*c^4*x^5)/5 - (5*c^6*x^7)/ 
7))/(35*c^3*Sqrt[1 + c^2*x^2]) - ((d + c^2*d*x^2)^(5/2)*(a + b*ArcSinh[c*x 
]))/(5*c^4*d) + ((d + c^2*d*x^2)^(7/2)*(a + b*ArcSinh[c*x]))/(7*c^4*d^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 290
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> I 
nt[ExpandIntegrand[(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d 
}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && IGtQ[q, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6219
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_ 
), x_Symbol] :> With[{u = IntHide[x^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSi 
nh[c*x])   u, x] - Simp[b*c*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]   Int[S 
implifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x 
] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1) 
/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])
 
Maple [A] (verified)

Time = 1.07 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.93

method result size
orering \(\frac {\left (325 c^{8} x^{8}+866 c^{6} x^{6}+553 c^{4} x^{4}-420 c^{2} x^{2}-280\right ) \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\operatorname {arcsinh}\left (x c \right )\right )}{1225 c^{4} \left (c^{2} x^{2}+1\right )^{2}}-\frac {\left (75 c^{6} x^{6}+168 c^{4} x^{4}+35 c^{2} x^{2}-210\right ) \left (3 x^{2} \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\operatorname {arcsinh}\left (x c \right )\right )+3 x^{4} \sqrt {c^{2} d \,x^{2}+d}\, \left (a +b \,\operatorname {arcsinh}\left (x c \right )\right ) c^{2} d +\frac {x^{3} \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} b c}{\sqrt {c^{2} x^{2}+1}}\right )}{3675 x^{2} c^{4} \left (c^{2} x^{2}+1\right )}\) \(201\)
default \(a \left (\frac {x^{2} \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{7 c^{2} d}-\frac {2 \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{35 d \,c^{4}}\right )+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (64 c^{8} x^{8}+64 x^{7} c^{7} \sqrt {c^{2} x^{2}+1}+144 c^{6} x^{6}+112 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+104 c^{4} x^{4}+56 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+25 c^{2} x^{2}+7 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (-1+7 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{6272 c^{4} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (16 c^{6} x^{6}+16 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+28 c^{4} x^{4}+20 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+13 c^{2} x^{2}+5 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (-1+5 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{3200 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}+4 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+5 c^{2} x^{2}+3 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (-1+3 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{384 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {3 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}+\sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (\operatorname {arcsinh}\left (x c \right )-1\right ) d}{128 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {3 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-\sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (\operatorname {arcsinh}\left (x c \right )+1\right ) d}{128 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}-4 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+5 c^{2} x^{2}-3 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (1+3 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{384 c^{4} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (16 c^{6} x^{6}-16 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+28 c^{4} x^{4}-20 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+13 c^{2} x^{2}-5 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (1+5 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{3200 c^{4} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (64 c^{8} x^{8}-64 x^{7} c^{7} \sqrt {c^{2} x^{2}+1}+144 c^{6} x^{6}-112 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+104 c^{4} x^{4}-56 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+25 c^{2} x^{2}-7 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (1+7 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{6272 c^{4} \left (c^{2} x^{2}+1\right )}\right )\) \(872\)
parts \(a \left (\frac {x^{2} \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{7 c^{2} d}-\frac {2 \left (c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{35 d \,c^{4}}\right )+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (64 c^{8} x^{8}+64 x^{7} c^{7} \sqrt {c^{2} x^{2}+1}+144 c^{6} x^{6}+112 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+104 c^{4} x^{4}+56 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+25 c^{2} x^{2}+7 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (-1+7 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{6272 c^{4} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (16 c^{6} x^{6}+16 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+28 c^{4} x^{4}+20 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+13 c^{2} x^{2}+5 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (-1+5 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{3200 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}+4 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+5 c^{2} x^{2}+3 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (-1+3 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{384 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {3 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}+\sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (\operatorname {arcsinh}\left (x c \right )-1\right ) d}{128 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {3 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-\sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (\operatorname {arcsinh}\left (x c \right )+1\right ) d}{128 c^{4} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}-4 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+5 c^{2} x^{2}-3 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (1+3 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{384 c^{4} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (16 c^{6} x^{6}-16 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+28 c^{4} x^{4}-20 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+13 c^{2} x^{2}-5 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (1+5 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{3200 c^{4} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (64 c^{8} x^{8}-64 x^{7} c^{7} \sqrt {c^{2} x^{2}+1}+144 c^{6} x^{6}-112 \sqrt {c^{2} x^{2}+1}\, x^{5} c^{5}+104 c^{4} x^{4}-56 \sqrt {c^{2} x^{2}+1}\, c^{3} x^{3}+25 c^{2} x^{2}-7 \sqrt {c^{2} x^{2}+1}\, x c +1\right ) \left (1+7 \,\operatorname {arcsinh}\left (x c \right )\right ) d}{6272 c^{4} \left (c^{2} x^{2}+1\right )}\right )\) \(872\)

Input:

int(x^3*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(x*c)),x,method=_RETURNVERBOSE)
 

Output:

1/1225*(325*c^8*x^8+866*c^6*x^6+553*c^4*x^4-420*c^2*x^2-280)/c^4/(c^2*x^2+ 
1)^2*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(x*c))-1/3675/x^2*(75*c^6*x^6+168*c^4 
*x^4+35*c^2*x^2-210)/c^4/(c^2*x^2+1)*(3*x^2*(c^2*d*x^2+d)^(3/2)*(a+b*arcsi 
nh(x*c))+3*x^4*(c^2*d*x^2+d)^(1/2)*(a+b*arcsinh(x*c))*c^2*d+x^3*(c^2*d*x^2 
+d)^(3/2)*b*c/(c^2*x^2+1)^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.92 \[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\frac {105 \, {\left (5 \, b c^{8} d x^{8} + 13 \, b c^{6} d x^{6} + 9 \, b c^{4} d x^{4} - b c^{2} d x^{2} - 2 \, b d\right )} \sqrt {c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) + {\left (525 \, a c^{8} d x^{8} + 1365 \, a c^{6} d x^{6} + 945 \, a c^{4} d x^{4} - 105 \, a c^{2} d x^{2} - 210 \, a d - {\left (75 \, b c^{7} d x^{7} + 168 \, b c^{5} d x^{5} + 35 \, b c^{3} d x^{3} - 210 \, b c d x\right )} \sqrt {c^{2} x^{2} + 1}\right )} \sqrt {c^{2} d x^{2} + d}}{3675 \, {\left (c^{6} x^{2} + c^{4}\right )}} \] Input:

integrate(x^3*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="fricas" 
)
 

Output:

1/3675*(105*(5*b*c^8*d*x^8 + 13*b*c^6*d*x^6 + 9*b*c^4*d*x^4 - b*c^2*d*x^2 
- 2*b*d)*sqrt(c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 + 1)) + (525*a*c^8*d*x 
^8 + 1365*a*c^6*d*x^6 + 945*a*c^4*d*x^4 - 105*a*c^2*d*x^2 - 210*a*d - (75* 
b*c^7*d*x^7 + 168*b*c^5*d*x^5 + 35*b*c^3*d*x^3 - 210*b*c*d*x)*sqrt(c^2*x^2 
 + 1))*sqrt(c^2*d*x^2 + d))/(c^6*x^2 + c^4)
 

Sympy [F]

\[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\int x^{3} \left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )\, dx \] Input:

integrate(x**3*(c**2*d*x**2+d)**(3/2)*(a+b*asinh(c*x)),x)
 

Output:

Integral(x**3*(d*(c**2*x**2 + 1))**(3/2)*(a + b*asinh(c*x)), x)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.67 \[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\frac {1}{35} \, {\left (\frac {5 \, {\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x^{2}}{c^{2} d} - \frac {2 \, {\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}{c^{4} d}\right )} b \operatorname {arsinh}\left (c x\right ) + \frac {1}{35} \, {\left (\frac {5 \, {\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x^{2}}{c^{2} d} - \frac {2 \, {\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}{c^{4} d}\right )} a - \frac {{\left (75 \, c^{6} d^{\frac {3}{2}} x^{7} + 168 \, c^{4} d^{\frac {3}{2}} x^{5} + 35 \, c^{2} d^{\frac {3}{2}} x^{3} - 210 \, d^{\frac {3}{2}} x\right )} b}{3675 \, c^{3}} \] Input:

integrate(x^3*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="maxima" 
)
 

Output:

1/35*(5*(c^2*d*x^2 + d)^(5/2)*x^2/(c^2*d) - 2*(c^2*d*x^2 + d)^(5/2)/(c^4*d 
))*b*arcsinh(c*x) + 1/35*(5*(c^2*d*x^2 + d)^(5/2)*x^2/(c^2*d) - 2*(c^2*d*x 
^2 + d)^(5/2)/(c^4*d))*a - 1/3675*(75*c^6*d^(3/2)*x^7 + 168*c^4*d^(3/2)*x^ 
5 + 35*c^2*d^(3/2)*x^3 - 210*d^(3/2)*x)*b/c^3
 

Giac [F(-2)]

Exception generated. \[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^3*(c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x)),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\int x^3\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,{\left (d\,c^2\,x^2+d\right )}^{3/2} \,d x \] Input:

int(x^3*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(3/2),x)
 

Output:

int(x^3*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(3/2), x)
 

Reduce [F]

\[ \int x^3 \left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x)) \, dx=\frac {\sqrt {d}\, d \left (5 \sqrt {c^{2} x^{2}+1}\, a \,c^{6} x^{6}+8 \sqrt {c^{2} x^{2}+1}\, a \,c^{4} x^{4}+\sqrt {c^{2} x^{2}+1}\, a \,c^{2} x^{2}-2 \sqrt {c^{2} x^{2}+1}\, a +35 \left (\int \sqrt {c^{2} x^{2}+1}\, \mathit {asinh} \left (c x \right ) x^{5}d x \right ) b \,c^{6}+35 \left (\int \sqrt {c^{2} x^{2}+1}\, \mathit {asinh} \left (c x \right ) x^{3}d x \right ) b \,c^{4}\right )}{35 c^{4}} \] Input:

int(x^3*(c^2*d*x^2+d)^(3/2)*(a+b*asinh(c*x)),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(d)*d*(5*sqrt(c**2*x**2 + 1)*a*c**6*x**6 + 8*sqrt(c**2*x**2 + 1)*a*c* 
*4*x**4 + sqrt(c**2*x**2 + 1)*a*c**2*x**2 - 2*sqrt(c**2*x**2 + 1)*a + 35*i 
nt(sqrt(c**2*x**2 + 1)*asinh(c*x)*x**5,x)*b*c**6 + 35*int(sqrt(c**2*x**2 + 
 1)*asinh(c*x)*x**3,x)*b*c**4))/(35*c**4)