\(\int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx\) [161]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 203 \[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=-\frac {b c \sqrt {1+c^2 x^2}}{2 x \sqrt {d+c^2 d x^2}}-\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{2 d x^2}+\frac {c^2 \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x)) \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right )}{\sqrt {d+c^2 d x^2}}+\frac {b c^2 \sqrt {1+c^2 x^2} \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )}{2 \sqrt {d+c^2 d x^2}}-\frac {b c^2 \sqrt {1+c^2 x^2} \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )}{2 \sqrt {d+c^2 d x^2}} \] Output:

-1/2*b*c*(c^2*x^2+1)^(1/2)/x/(c^2*d*x^2+d)^(1/2)-1/2*(c^2*d*x^2+d)^(1/2)*( 
a+b*arcsinh(c*x))/d/x^2+c^2*(c^2*x^2+1)^(1/2)*(a+b*arcsinh(c*x))*arctanh(c 
*x+(c^2*x^2+1)^(1/2))/(c^2*d*x^2+d)^(1/2)+1/2*b*c^2*(c^2*x^2+1)^(1/2)*poly 
log(2,-c*x-(c^2*x^2+1)^(1/2))/(c^2*d*x^2+d)^(1/2)-1/2*b*c^2*(c^2*x^2+1)^(1 
/2)*polylog(2,c*x+(c^2*x^2+1)^(1/2))/(c^2*d*x^2+d)^(1/2)
 

Mathematica [A] (verified)

Time = 2.05 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.13 \[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\frac {-\frac {4 a \sqrt {d+c^2 d x^2}}{x^2}-4 a c^2 \sqrt {d} \log (x)+4 a c^2 \sqrt {d} \log \left (d+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {b c^2 d^2 \left (1+c^2 x^2\right )^{3/2} \left (-2 \coth \left (\frac {1}{2} \text {arcsinh}(c x)\right )-\text {arcsinh}(c x) \text {csch}^2\left (\frac {1}{2} \text {arcsinh}(c x)\right )-4 \text {arcsinh}(c x) \log \left (1-e^{-\text {arcsinh}(c x)}\right )+4 \text {arcsinh}(c x) \log \left (1+e^{-\text {arcsinh}(c x)}\right )-4 \operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c x)}\right )+4 \operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c x)}\right )-\text {arcsinh}(c x) \text {sech}^2\left (\frac {1}{2} \text {arcsinh}(c x)\right )+2 \tanh \left (\frac {1}{2} \text {arcsinh}(c x)\right )\right )}{\left (d+c^2 d x^2\right )^{3/2}}}{8 d} \] Input:

Integrate[(a + b*ArcSinh[c*x])/(x^3*Sqrt[d + c^2*d*x^2]),x]
 

Output:

((-4*a*Sqrt[d + c^2*d*x^2])/x^2 - 4*a*c^2*Sqrt[d]*Log[x] + 4*a*c^2*Sqrt[d] 
*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]] + (b*c^2*d^2*(1 + c^2*x^2)^(3/2)*(-2 
*Coth[ArcSinh[c*x]/2] - ArcSinh[c*x]*Csch[ArcSinh[c*x]/2]^2 - 4*ArcSinh[c* 
x]*Log[1 - E^(-ArcSinh[c*x])] + 4*ArcSinh[c*x]*Log[1 + E^(-ArcSinh[c*x])] 
- 4*PolyLog[2, -E^(-ArcSinh[c*x])] + 4*PolyLog[2, E^(-ArcSinh[c*x])] - Arc 
Sinh[c*x]*Sech[ArcSinh[c*x]/2]^2 + 2*Tanh[ArcSinh[c*x]/2]))/(d + c^2*d*x^2 
)^(3/2))/(8*d)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.96 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.75, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {6224, 15, 6231, 3042, 26, 4670, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {c^2 d x^2+d}} \, dx\)

\(\Big \downarrow \) 6224

\(\displaystyle -\frac {1}{2} c^2 \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 d x^2+d}}dx+\frac {b c \sqrt {c^2 x^2+1} \int \frac {1}{x^2}dx}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {1}{2} c^2 \int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 d x^2+d}}dx-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 6231

\(\displaystyle -\frac {c^2 \sqrt {c^2 x^2+1} \int \frac {a+b \text {arcsinh}(c x)}{c x}d\text {arcsinh}(c x)}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {c^2 \sqrt {c^2 x^2+1} \int i (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {i c^2 \sqrt {c^2 x^2+1} \int (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 4670

\(\displaystyle -\frac {i c^2 \sqrt {c^2 x^2+1} \left (i b \int \log \left (1-e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)-i b \int \log \left (1+e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {i c^2 \sqrt {c^2 x^2+1} \left (i b \int e^{-\text {arcsinh}(c x)} \log \left (1-e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}-i b \int e^{-\text {arcsinh}(c x)} \log \left (1+e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 2838

\(\displaystyle -\frac {i c^2 \sqrt {c^2 x^2+1} \left (2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))+i b \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )\right )}{2 \sqrt {c^2 d x^2+d}}-\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{2 d x^2}-\frac {b c \sqrt {c^2 x^2+1}}{2 x \sqrt {c^2 d x^2+d}}\)

Input:

Int[(a + b*ArcSinh[c*x])/(x^3*Sqrt[d + c^2*d*x^2]),x]
 

Output:

-1/2*(b*c*Sqrt[1 + c^2*x^2])/(x*Sqrt[d + c^2*d*x^2]) - (Sqrt[d + c^2*d*x^2 
]*(a + b*ArcSinh[c*x]))/(2*d*x^2) - ((I/2)*c^2*Sqrt[1 + c^2*x^2]*((2*I)*(a 
 + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh[c*x]] + I*b*PolyLog[2, -E^ArcSinh[c*x 
]] - I*b*PolyLog[2, E^ArcSinh[c*x]]))/Sqrt[d + c^2*d*x^2]
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4670
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x 
_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] 
 + (-Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*fz*x 
)], x], x] + Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e 
+ f*fz*x)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6224
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + 
b*ArcSinh[c*x])^n/(d*f*(m + 1))), x] + (-Simp[c^2*((m + 2*p + 3)/(f^2*(m + 
1)))   Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Sim 
p[b*c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m + 
1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{ 
a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && ILtQ[m, -1]
 

rule 6231
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.) 
*(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e 
*x^2]]   Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ 
[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]
 
Maple [A] (verified)

Time = 0.88 (sec) , antiderivative size = 333, normalized size of antiderivative = 1.64

method result size
default \(-\frac {a \sqrt {c^{2} d \,x^{2}+d}}{2 d \,x^{2}}+\frac {a \,c^{2} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )}{2 \sqrt {d}}+b \left (-\frac {\left (\operatorname {arcsinh}\left (x c \right ) c^{2} x^{2}+\sqrt {c^{2} x^{2}+1}\, x c +\operatorname {arcsinh}\left (x c \right )\right ) \sqrt {d \left (c^{2} x^{2}+1\right )}}{2 d \,x^{2} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) \ln \left (1-x c -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, x c +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) \ln \left (1+x c +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, -x c -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}\right )\) \(333\)
parts \(-\frac {a \sqrt {c^{2} d \,x^{2}+d}}{2 d \,x^{2}}+\frac {a \,c^{2} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )}{2 \sqrt {d}}+b \left (-\frac {\left (\operatorname {arcsinh}\left (x c \right ) c^{2} x^{2}+\sqrt {c^{2} x^{2}+1}\, x c +\operatorname {arcsinh}\left (x c \right )\right ) \sqrt {d \left (c^{2} x^{2}+1\right )}}{2 d \,x^{2} \left (c^{2} x^{2}+1\right )}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) \ln \left (1-x c -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}-\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, x c +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) \ln \left (1+x c +\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {polylog}\left (2, -x c -\sqrt {c^{2} x^{2}+1}\right ) c^{2}}{2 \sqrt {c^{2} x^{2}+1}\, d}\right )\) \(333\)

Input:

int((a+b*arcsinh(x*c))/x^3/(c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2*a/d/x^2*(c^2*d*x^2+d)^(1/2)+1/2*a*c^2/d^(1/2)*ln((2*d+2*d^(1/2)*(c^2* 
d*x^2+d)^(1/2))/x)+b*(-1/2*(arcsinh(x*c)*c^2*x^2+(c^2*x^2+1)^(1/2)*x*c+arc 
sinh(x*c))*(d*(c^2*x^2+1))^(1/2)/d/x^2/(c^2*x^2+1)-1/2*(d*(c^2*x^2+1))^(1/ 
2)/(c^2*x^2+1)^(1/2)/d*arcsinh(x*c)*ln(1-x*c-(c^2*x^2+1)^(1/2))*c^2-1/2*(d 
*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*polylog(2,x*c+(c^2*x^2+1)^(1/2))*c 
^2+1/2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*arcsinh(x*c)*ln(1+x*c+(c^ 
2*x^2+1)^(1/2))*c^2+1/2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d*polylog( 
2,-x*c-(c^2*x^2+1)^(1/2))*c^2)
 

Fricas [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\int { \frac {b \operatorname {arsinh}\left (c x\right ) + a}{\sqrt {c^{2} d x^{2} + d} x^{3}} \,d x } \] Input:

integrate((a+b*arcsinh(c*x))/x^3/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas" 
)
 

Output:

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/(c^2*d*x^5 + d*x^3), x)
 

Sympy [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\int \frac {a + b \operatorname {asinh}{\left (c x \right )}}{x^{3} \sqrt {d \left (c^{2} x^{2} + 1\right )}}\, dx \] Input:

integrate((a+b*asinh(c*x))/x**3/(c**2*d*x**2+d)**(1/2),x)
 

Output:

Integral((a + b*asinh(c*x))/(x**3*sqrt(d*(c**2*x**2 + 1))), x)
 

Maxima [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\int { \frac {b \operatorname {arsinh}\left (c x\right ) + a}{\sqrt {c^{2} d x^{2} + d} x^{3}} \,d x } \] Input:

integrate((a+b*arcsinh(c*x))/x^3/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima" 
)
 

Output:

1/2*(c^2*arcsinh(1/(c*abs(x)))/sqrt(d) - sqrt(c^2*d*x^2 + d)/(d*x^2))*a + 
b*integrate(log(c*x + sqrt(c^2*x^2 + 1))/(sqrt(c^2*d*x^2 + d)*x^3), x)
 

Giac [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\int { \frac {b \operatorname {arsinh}\left (c x\right ) + a}{\sqrt {c^{2} d x^{2} + d} x^{3}} \,d x } \] Input:

integrate((a+b*arcsinh(c*x))/x^3/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")
 

Output:

integrate((b*arcsinh(c*x) + a)/(sqrt(c^2*d*x^2 + d)*x^3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (c\,x\right )}{x^3\,\sqrt {d\,c^2\,x^2+d}} \,d x \] Input:

int((a + b*asinh(c*x))/(x^3*(d + c^2*d*x^2)^(1/2)),x)
                                                                                    
                                                                                    
 

Output:

int((a + b*asinh(c*x))/(x^3*(d + c^2*d*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x^3 \sqrt {d+c^2 d x^2}} \, dx=\frac {-\sqrt {c^{2} x^{2}+1}\, a +2 \left (\int \frac {\mathit {asinh} \left (c x \right )}{\sqrt {c^{2} x^{2}+1}\, x^{3}}d x \right ) b \,x^{2}-\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x -1\right ) a \,c^{2} x^{2}+\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x +1\right ) a \,c^{2} x^{2}}{2 \sqrt {d}\, x^{2}} \] Input:

int((a+b*asinh(c*x))/x^3/(c^2*d*x^2+d)^(1/2),x)
 

Output:

( - sqrt(c**2*x**2 + 1)*a + 2*int(asinh(c*x)/(sqrt(c**2*x**2 + 1)*x**3),x) 
*b*x**2 - log(sqrt(c**2*x**2 + 1) + c*x - 1)*a*c**2*x**2 + log(sqrt(c**2*x 
**2 + 1) + c*x + 1)*a*c**2*x**2)/(2*sqrt(d)*x**2)