\(\int \frac {a+b \text {arcsinh}(c x)}{x (d+c^2 d x^2)^{5/2}} \, dx\) [180]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 266 \[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=-\frac {b c x}{6 d^2 \sqrt {1+c^2 x^2} \sqrt {d+c^2 d x^2}}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (d+c^2 d x^2\right )^{3/2}}+\frac {\frac {a}{d^2}+\frac {b \text {arcsinh}(c x)}{d^2}}{\sqrt {d+c^2 d x^2}}-\frac {7 b \sqrt {1+c^2 x^2} \arctan (c x)}{6 d^2 \sqrt {d+c^2 d x^2}}-\frac {2 \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x)) \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right )}{d^2 \sqrt {d+c^2 d x^2}}-\frac {b \sqrt {1+c^2 x^2} \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )}{d^2 \sqrt {d+c^2 d x^2}}+\frac {b \sqrt {1+c^2 x^2} \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )}{d^2 \sqrt {d+c^2 d x^2}} \] Output:

-1/6*b*c*x/d^2/(c^2*x^2+1)^(1/2)/(c^2*d*x^2+d)^(1/2)+1/3*(a+b*arcsinh(c*x) 
)/d/(c^2*d*x^2+d)^(3/2)+(a/d^2+b*arcsinh(c*x)/d^2)/(c^2*d*x^2+d)^(1/2)-7/6 
*b*(c^2*x^2+1)^(1/2)*arctan(c*x)/d^2/(c^2*d*x^2+d)^(1/2)-2*(c^2*x^2+1)^(1/ 
2)*(a+b*arcsinh(c*x))*arctanh(c*x+(c^2*x^2+1)^(1/2))/d^2/(c^2*d*x^2+d)^(1/ 
2)-b*(c^2*x^2+1)^(1/2)*polylog(2,-c*x-(c^2*x^2+1)^(1/2))/d^2/(c^2*d*x^2+d) 
^(1/2)+b*(c^2*x^2+1)^(1/2)*polylog(2,c*x+(c^2*x^2+1)^(1/2))/d^2/(c^2*d*x^2 
+d)^(1/2)
 

Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 247, normalized size of antiderivative = 0.93 \[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\frac {\frac {2 a \left (4+3 c^2 x^2\right ) \sqrt {d+c^2 d x^2}}{\left (1+c^2 x^2\right )^2}+6 a \sqrt {d} \log (x)-6 a \sqrt {d} \log \left (d+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {b d^2 \left (1+c^2 x^2\right )^{3/2} \left (-\frac {c x}{1+c^2 x^2}+\frac {2 \text {arcsinh}(c x)}{\left (1+c^2 x^2\right )^{3/2}}+\frac {6 \text {arcsinh}(c x)}{\sqrt {1+c^2 x^2}}-14 \arctan \left (\tanh \left (\frac {1}{2} \text {arcsinh}(c x)\right )\right )+6 \text {arcsinh}(c x) \log \left (1-e^{-\text {arcsinh}(c x)}\right )-6 \text {arcsinh}(c x) \log \left (1+e^{-\text {arcsinh}(c x)}\right )+6 \operatorname {PolyLog}\left (2,-e^{-\text {arcsinh}(c x)}\right )-6 \operatorname {PolyLog}\left (2,e^{-\text {arcsinh}(c x)}\right )\right )}{\left (d+c^2 d x^2\right )^{3/2}}}{6 d^3} \] Input:

Integrate[(a + b*ArcSinh[c*x])/(x*(d + c^2*d*x^2)^(5/2)),x]
 

Output:

((2*a*(4 + 3*c^2*x^2)*Sqrt[d + c^2*d*x^2])/(1 + c^2*x^2)^2 + 6*a*Sqrt[d]*L 
og[x] - 6*a*Sqrt[d]*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]] + (b*d^2*(1 + c^2 
*x^2)^(3/2)*(-((c*x)/(1 + c^2*x^2)) + (2*ArcSinh[c*x])/(1 + c^2*x^2)^(3/2) 
 + (6*ArcSinh[c*x])/Sqrt[1 + c^2*x^2] - 14*ArcTan[Tanh[ArcSinh[c*x]/2]] + 
6*ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])] - 6*ArcSinh[c*x]*Log[1 + E^(-Arc 
Sinh[c*x])] + 6*PolyLog[2, -E^(-ArcSinh[c*x])] - 6*PolyLog[2, E^(-ArcSinh[ 
c*x])]))/(d + c^2*d*x^2)^(3/2))/(6*d^3)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 1.78 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.92, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {6226, 215, 216, 6226, 216, 6231, 3042, 26, 4670, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arcsinh}(c x)}{x \left (c^2 d x^2+d\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 6226

\(\displaystyle \frac {\int \frac {a+b \text {arcsinh}(c x)}{x \left (c^2 d x^2+d\right )^{3/2}}dx}{d}-\frac {b c \sqrt {c^2 x^2+1} \int \frac {1}{\left (c^2 x^2+1\right )^2}dx}{3 d^2 \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {\int \frac {a+b \text {arcsinh}(c x)}{x \left (c^2 d x^2+d\right )^{3/2}}dx}{d}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {1}{2} \int \frac {1}{c^2 x^2+1}dx+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\int \frac {a+b \text {arcsinh}(c x)}{x \left (c^2 d x^2+d\right )^{3/2}}dx}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 6226

\(\displaystyle \frac {\frac {\int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 d x^2+d}}dx}{d}-\frac {b c \sqrt {c^2 x^2+1} \int \frac {1}{c^2 x^2+1}dx}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\int \frac {a+b \text {arcsinh}(c x)}{x \sqrt {c^2 d x^2+d}}dx}{d}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 6231

\(\displaystyle \frac {\frac {\sqrt {c^2 x^2+1} \int \frac {a+b \text {arcsinh}(c x)}{c x}d\text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\sqrt {c^2 x^2+1} \int i (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {\frac {i \sqrt {c^2 x^2+1} \int (a+b \text {arcsinh}(c x)) \csc (i \text {arcsinh}(c x))d\text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 4670

\(\displaystyle \frac {\frac {i \sqrt {c^2 x^2+1} \left (i b \int \log \left (1-e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)-i b \int \log \left (1+e^{\text {arcsinh}(c x)}\right )d\text {arcsinh}(c x)+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {\frac {i \sqrt {c^2 x^2+1} \left (i b \int e^{-\text {arcsinh}(c x)} \log \left (1-e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}-i b \int e^{-\text {arcsinh}(c x)} \log \left (1+e^{\text {arcsinh}(c x)}\right )de^{\text {arcsinh}(c x)}+2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))\right )}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\frac {i \sqrt {c^2 x^2+1} \left (2 i \text {arctanh}\left (e^{\text {arcsinh}(c x)}\right ) (a+b \text {arcsinh}(c x))+i b \operatorname {PolyLog}\left (2,-e^{\text {arcsinh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{\text {arcsinh}(c x)}\right )\right )}{d \sqrt {c^2 d x^2+d}}+\frac {a+b \text {arcsinh}(c x)}{d \sqrt {c^2 d x^2+d}}-\frac {b \sqrt {c^2 x^2+1} \arctan (c x)}{d \sqrt {c^2 d x^2+d}}}{d}+\frac {a+b \text {arcsinh}(c x)}{3 d \left (c^2 d x^2+d\right )^{3/2}}-\frac {b c \sqrt {c^2 x^2+1} \left (\frac {\arctan (c x)}{2 c}+\frac {x}{2 \left (c^2 x^2+1\right )}\right )}{3 d^2 \sqrt {c^2 d x^2+d}}\)

Input:

Int[(a + b*ArcSinh[c*x])/(x*(d + c^2*d*x^2)^(5/2)),x]
 

Output:

(a + b*ArcSinh[c*x])/(3*d*(d + c^2*d*x^2)^(3/2)) - (b*c*Sqrt[1 + c^2*x^2]* 
(x/(2*(1 + c^2*x^2)) + ArcTan[c*x]/(2*c)))/(3*d^2*Sqrt[d + c^2*d*x^2]) + ( 
(a + b*ArcSinh[c*x])/(d*Sqrt[d + c^2*d*x^2]) - (b*Sqrt[1 + c^2*x^2]*ArcTan 
[c*x])/(d*Sqrt[d + c^2*d*x^2]) + (I*Sqrt[1 + c^2*x^2]*((2*I)*(a + b*ArcSin 
h[c*x])*ArcTanh[E^ArcSinh[c*x]] + I*b*PolyLog[2, -E^ArcSinh[c*x]] - I*b*Po 
lyLog[2, E^ArcSinh[c*x]]))/(d*Sqrt[d + c^2*d*x^2]))/d
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 215
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1) 
/(2*a*(p + 1))), x] + Simp[(2*p + 3)/(2*a*(p + 1))   Int[(a + b*x^2)^(p + 1 
), x], x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[6 
*p])
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4670
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x 
_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] 
 + (-Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*fz*x 
)], x], x] + Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e 
+ f*fz*x)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6226
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_ 
.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a 
 + b*ArcSinh[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(p + 1 
))   Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x], x] + Simp[ 
b*c*(n/(2*f*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p]   Int[(f*x)^(m + 
1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{ 
a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] &&  !G 
tQ[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])
 

rule 6231
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.) 
*(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e 
*x^2]]   Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ 
[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]
 
Maple [A] (verified)

Time = 1.02 (sec) , antiderivative size = 364, normalized size of antiderivative = 1.37

method result size
default \(\frac {a}{3 d \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {a}{d^{2} \sqrt {c^{2} d \,x^{2}+d}}-\frac {a \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )}{d^{\frac {5}{2}}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) x^{2} c^{2}}{\left (c^{2} x^{2}+1\right )^{2} d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, x c}{6 \left (c^{2} x^{2}+1\right )^{\frac {3}{2}} d^{3}}+\frac {4 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right )}{3 \left (c^{2} x^{2}+1\right )^{2} d^{3}}-\frac {7 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arctan \left (x c +\sqrt {c^{2} x^{2}+1}\right )}{3 \sqrt {c^{2} x^{2}+1}\, d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {dilog}\left (1+x c +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) \ln \left (1+x c +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {dilog}\left (x c +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d^{3}}\) \(364\)
parts \(\frac {a}{3 d \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {a}{d^{2} \sqrt {c^{2} d \,x^{2}+d}}-\frac {a \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right )}{d^{\frac {5}{2}}}+\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) x^{2} c^{2}}{\left (c^{2} x^{2}+1\right )^{2} d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, x c}{6 \left (c^{2} x^{2}+1\right )^{\frac {3}{2}} d^{3}}+\frac {4 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right )}{3 \left (c^{2} x^{2}+1\right )^{2} d^{3}}-\frac {7 b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arctan \left (x c +\sqrt {c^{2} x^{2}+1}\right )}{3 \sqrt {c^{2} x^{2}+1}\, d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {dilog}\left (1+x c +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {arcsinh}\left (x c \right ) \ln \left (1+x c +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d^{3}}-\frac {b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \operatorname {dilog}\left (x c +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}\, d^{3}}\) \(364\)

Input:

int((a+b*arcsinh(x*c))/x/(c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/3*a/d/(c^2*d*x^2+d)^(3/2)+a/d^2/(c^2*d*x^2+d)^(1/2)-a/d^(5/2)*ln((2*d+2* 
d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)+b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^2/d^3* 
arcsinh(x*c)*x^2*c^2-1/6*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(3/2)/d^3*x*c 
+4/3*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^2/d^3*arcsinh(x*c)-7/3*b*(d*(c^2* 
x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^3*arctan(x*c+(c^2*x^2+1)^(1/2))-b*(d*(c^ 
2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^3*dilog(1+x*c+(c^2*x^2+1)^(1/2))-b*(d* 
(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^3*arcsinh(x*c)*ln(1+x*c+(c^2*x^2+1) 
^(1/2))-b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/d^3*dilog(x*c+(c^2*x^2+1 
)^(1/2))
 

Fricas [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arsinh}\left (c x\right ) + a}{{\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x} \,d x } \] Input:

integrate((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(5/2),x, algorithm="fricas")
 

Output:

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)/(c^6*d^3*x^7 + 3*c^4*d^3 
*x^5 + 3*c^2*d^3*x^3 + d^3*x), x)
 

Sympy [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\int \frac {a + b \operatorname {asinh}{\left (c x \right )}}{x \left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((a+b*asinh(c*x))/x/(c**2*d*x**2+d)**(5/2),x)
 

Output:

Integral((a + b*asinh(c*x))/(x*(d*(c**2*x**2 + 1))**(5/2)), x)
 

Maxima [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arsinh}\left (c x\right ) + a}{{\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x} \,d x } \] Input:

integrate((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(5/2),x, algorithm="maxima")
 

Output:

-1/3*a*(3*arcsinh(1/(c*abs(x)))/d^(5/2) - 3/(sqrt(c^2*d*x^2 + d)*d^2) - 1/ 
((c^2*d*x^2 + d)^(3/2)*d)) + b*integrate(log(c*x + sqrt(c^2*x^2 + 1))/((c^ 
2*d*x^2 + d)^(5/2)*x), x)
 

Giac [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arsinh}\left (c x\right ) + a}{{\left (c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x} \,d x } \] Input:

integrate((a+b*arcsinh(c*x))/x/(c^2*d*x^2+d)^(5/2),x, algorithm="giac")
 

Output:

integrate((b*arcsinh(c*x) + a)/((c^2*d*x^2 + d)^(5/2)*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (c\,x\right )}{x\,{\left (d\,c^2\,x^2+d\right )}^{5/2}} \,d x \] Input:

int((a + b*asinh(c*x))/(x*(d + c^2*d*x^2)^(5/2)),x)
 

Output:

int((a + b*asinh(c*x))/(x*(d + c^2*d*x^2)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {a+b \text {arcsinh}(c x)}{x \left (d+c^2 d x^2\right )^{5/2}} \, dx=\frac {3 \sqrt {c^{2} x^{2}+1}\, a \,c^{2} x^{2}+4 \sqrt {c^{2} x^{2}+1}\, a +3 \left (\int \frac {\mathit {asinh} \left (c x \right )}{\sqrt {c^{2} x^{2}+1}\, c^{4} x^{5}+2 \sqrt {c^{2} x^{2}+1}\, c^{2} x^{3}+\sqrt {c^{2} x^{2}+1}\, x}d x \right ) b \,c^{4} x^{4}+6 \left (\int \frac {\mathit {asinh} \left (c x \right )}{\sqrt {c^{2} x^{2}+1}\, c^{4} x^{5}+2 \sqrt {c^{2} x^{2}+1}\, c^{2} x^{3}+\sqrt {c^{2} x^{2}+1}\, x}d x \right ) b \,c^{2} x^{2}+3 \left (\int \frac {\mathit {asinh} \left (c x \right )}{\sqrt {c^{2} x^{2}+1}\, c^{4} x^{5}+2 \sqrt {c^{2} x^{2}+1}\, c^{2} x^{3}+\sqrt {c^{2} x^{2}+1}\, x}d x \right ) b +3 \,\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x -1\right ) a \,c^{4} x^{4}+6 \,\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x -1\right ) a \,c^{2} x^{2}+3 \,\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x -1\right ) a -3 \,\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x +1\right ) a \,c^{4} x^{4}-6 \,\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x +1\right ) a \,c^{2} x^{2}-3 \,\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x +1\right ) a}{3 \sqrt {d}\, d^{2} \left (c^{4} x^{4}+2 c^{2} x^{2}+1\right )} \] Input:

int((a+b*asinh(c*x))/x/(c^2*d*x^2+d)^(5/2),x)
 

Output:

(3*sqrt(c**2*x**2 + 1)*a*c**2*x**2 + 4*sqrt(c**2*x**2 + 1)*a + 3*int(asinh 
(c*x)/(sqrt(c**2*x**2 + 1)*c**4*x**5 + 2*sqrt(c**2*x**2 + 1)*c**2*x**3 + s 
qrt(c**2*x**2 + 1)*x),x)*b*c**4*x**4 + 6*int(asinh(c*x)/(sqrt(c**2*x**2 + 
1)*c**4*x**5 + 2*sqrt(c**2*x**2 + 1)*c**2*x**3 + sqrt(c**2*x**2 + 1)*x),x) 
*b*c**2*x**2 + 3*int(asinh(c*x)/(sqrt(c**2*x**2 + 1)*c**4*x**5 + 2*sqrt(c* 
*2*x**2 + 1)*c**2*x**3 + sqrt(c**2*x**2 + 1)*x),x)*b + 3*log(sqrt(c**2*x** 
2 + 1) + c*x - 1)*a*c**4*x**4 + 6*log(sqrt(c**2*x**2 + 1) + c*x - 1)*a*c** 
2*x**2 + 3*log(sqrt(c**2*x**2 + 1) + c*x - 1)*a - 3*log(sqrt(c**2*x**2 + 1 
) + c*x + 1)*a*c**4*x**4 - 6*log(sqrt(c**2*x**2 + 1) + c*x + 1)*a*c**2*x** 
2 - 3*log(sqrt(c**2*x**2 + 1) + c*x + 1)*a)/(3*sqrt(d)*d**2*(c**4*x**4 + 2 
*c**2*x**2 + 1))