\(\int \frac {(d+c^2 d x^2) (a+b \text {arcsinh}(c x))}{x^2} \, dx\) [7]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 66 \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=-b c d \sqrt {1+c^2 x^2}-\frac {d (a+b \text {arcsinh}(c x))}{x}+c^2 d x (a+b \text {arcsinh}(c x))-b c d \text {arctanh}\left (\sqrt {1+c^2 x^2}\right ) \] Output:

-b*c*d*(c^2*x^2+1)^(1/2)-d*(a+b*arcsinh(c*x))/x+c^2*d*x*(a+b*arcsinh(c*x)) 
-b*c*d*arctanh((c^2*x^2+1)^(1/2))
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.12 \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=-\frac {a d}{x}+a c^2 d x-b c d \sqrt {1+c^2 x^2}-\frac {b d \text {arcsinh}(c x)}{x}+b c^2 d x \text {arcsinh}(c x)-b c d \text {arctanh}\left (\sqrt {1+c^2 x^2}\right ) \] Input:

Integrate[((d + c^2*d*x^2)*(a + b*ArcSinh[c*x]))/x^2,x]
 

Output:

-((a*d)/x) + a*c^2*d*x - b*c*d*Sqrt[1 + c^2*x^2] - (b*d*ArcSinh[c*x])/x + 
b*c^2*d*x*ArcSinh[c*x] - b*c*d*ArcTanh[Sqrt[1 + c^2*x^2]]
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {6218, 25, 27, 354, 90, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c^2 d x^2+d\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx\)

\(\Big \downarrow \) 6218

\(\displaystyle -b c \int -\frac {d \left (1-c^2 x^2\right )}{x \sqrt {c^2 x^2+1}}dx+c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 25

\(\displaystyle b c \int \frac {d \left (1-c^2 x^2\right )}{x \sqrt {c^2 x^2+1}}dx+c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 27

\(\displaystyle b c d \int \frac {1-c^2 x^2}{x \sqrt {c^2 x^2+1}}dx+c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} b c d \int \frac {1-c^2 x^2}{x^2 \sqrt {c^2 x^2+1}}dx^2+c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {1}{2} b c d \left (\int \frac {1}{x^2 \sqrt {c^2 x^2+1}}dx^2-2 \sqrt {c^2 x^2+1}\right )+c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} b c d \left (\frac {2 \int \frac {1}{\frac {x^4}{c^2}-\frac {1}{c^2}}d\sqrt {c^2 x^2+1}}{c^2}-2 \sqrt {c^2 x^2+1}\right )+c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}\)

\(\Big \downarrow \) 221

\(\displaystyle c^2 d x (a+b \text {arcsinh}(c x))-\frac {d (a+b \text {arcsinh}(c x))}{x}+\frac {1}{2} b c d \left (-2 \text {arctanh}\left (\sqrt {c^2 x^2+1}\right )-2 \sqrt {c^2 x^2+1}\right )\)

Input:

Int[((d + c^2*d*x^2)*(a + b*ArcSinh[c*x]))/x^2,x]
 

Output:

-((d*(a + b*ArcSinh[c*x]))/x) + c^2*d*x*(a + b*ArcSinh[c*x]) + (b*c*d*(-2* 
Sqrt[1 + c^2*x^2] - 2*ArcTanh[Sqrt[1 + c^2*x^2]]))/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 6218
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp 
[(a + b*ArcSinh[c*x])   u, x] - Simp[b*c   Int[SimplifyIntegrand[u/Sqrt[1 + 
 c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] 
&& IGtQ[p, 0]
 
Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.02

method result size
parts \(a d \left (c^{2} x -\frac {1}{x}\right )+b d c \left (x c \,\operatorname {arcsinh}\left (x c \right )-\frac {\operatorname {arcsinh}\left (x c \right )}{x c}-\sqrt {c^{2} x^{2}+1}-\operatorname {arctanh}\left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )\right )\) \(67\)
derivativedivides \(c \left (a d \left (x c -\frac {1}{x c}\right )+b d \left (x c \,\operatorname {arcsinh}\left (x c \right )-\frac {\operatorname {arcsinh}\left (x c \right )}{x c}-\sqrt {c^{2} x^{2}+1}-\operatorname {arctanh}\left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )\right )\right )\) \(69\)
default \(c \left (a d \left (x c -\frac {1}{x c}\right )+b d \left (x c \,\operatorname {arcsinh}\left (x c \right )-\frac {\operatorname {arcsinh}\left (x c \right )}{x c}-\sqrt {c^{2} x^{2}+1}-\operatorname {arctanh}\left (\frac {1}{\sqrt {c^{2} x^{2}+1}}\right )\right )\right )\) \(69\)

Input:

int((c^2*d*x^2+d)*(a+b*arcsinh(x*c))/x^2,x,method=_RETURNVERBOSE)
 

Output:

a*d*(c^2*x-1/x)+b*d*c*(x*c*arcsinh(x*c)-arcsinh(x*c)/x/c-(c^2*x^2+1)^(1/2) 
-arctanh(1/(c^2*x^2+1)^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 156 vs. \(2 (62) = 124\).

Time = 0.13 (sec) , antiderivative size = 156, normalized size of antiderivative = 2.36 \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=\frac {a c^{2} d x^{2} - b c d x \log \left (-c x + \sqrt {c^{2} x^{2} + 1} + 1\right ) + b c d x \log \left (-c x + \sqrt {c^{2} x^{2} + 1} - 1\right ) - \sqrt {c^{2} x^{2} + 1} b c d x - {\left (b c^{2} - b\right )} d x \log \left (-c x + \sqrt {c^{2} x^{2} + 1}\right ) - a d + {\left (b c^{2} d x^{2} - {\left (b c^{2} - b\right )} d x - b d\right )} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )}{x} \] Input:

integrate((c^2*d*x^2+d)*(a+b*arcsinh(c*x))/x^2,x, algorithm="fricas")
 

Output:

(a*c^2*d*x^2 - b*c*d*x*log(-c*x + sqrt(c^2*x^2 + 1) + 1) + b*c*d*x*log(-c* 
x + sqrt(c^2*x^2 + 1) - 1) - sqrt(c^2*x^2 + 1)*b*c*d*x - (b*c^2 - b)*d*x*l 
og(-c*x + sqrt(c^2*x^2 + 1)) - a*d + (b*c^2*d*x^2 - (b*c^2 - b)*d*x - b*d) 
*log(c*x + sqrt(c^2*x^2 + 1)))/x
 

Sympy [F]

\[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=d \left (\int a c^{2}\, dx + \int \frac {a}{x^{2}}\, dx + \int b c^{2} \operatorname {asinh}{\left (c x \right )}\, dx + \int \frac {b \operatorname {asinh}{\left (c x \right )}}{x^{2}}\, dx\right ) \] Input:

integrate((c**2*d*x**2+d)*(a+b*asinh(c*x))/x**2,x)
 

Output:

d*(Integral(a*c**2, x) + Integral(a/x**2, x) + Integral(b*c**2*asinh(c*x), 
 x) + Integral(b*asinh(c*x)/x**2, x))
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.97 \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=a c^{2} d x + {\left (c x \operatorname {arsinh}\left (c x\right ) - \sqrt {c^{2} x^{2} + 1}\right )} b c d - {\left (c \operatorname {arsinh}\left (\frac {1}{c {\left | x \right |}}\right ) + \frac {\operatorname {arsinh}\left (c x\right )}{x}\right )} b d - \frac {a d}{x} \] Input:

integrate((c^2*d*x^2+d)*(a+b*arcsinh(c*x))/x^2,x, algorithm="maxima")
 

Output:

a*c^2*d*x + (c*x*arcsinh(c*x) - sqrt(c^2*x^2 + 1))*b*c*d - (c*arcsinh(1/(c 
*abs(x))) + arcsinh(c*x)/x)*b*d - a*d/x
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c^2*d*x^2+d)*(a+b*arcsinh(c*x))/x^2,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=\int \frac {\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\left (d\,c^2\,x^2+d\right )}{x^2} \,d x \] Input:

int(((a + b*asinh(c*x))*(d + c^2*d*x^2))/x^2,x)
 

Output:

int(((a + b*asinh(c*x))*(d + c^2*d*x^2))/x^2, x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.39 \[ \int \frac {\left (d+c^2 d x^2\right ) (a+b \text {arcsinh}(c x))}{x^2} \, dx=\frac {d \left (\mathit {asinh} \left (c x \right ) b \,c^{2} x^{2}-\mathit {asinh} \left (c x \right ) b -\sqrt {c^{2} x^{2}+1}\, b c x +\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x -1\right ) b c x -\mathrm {log}\left (\sqrt {c^{2} x^{2}+1}+c x +1\right ) b c x +a \,c^{2} x^{2}-a \right )}{x} \] Input:

int((c^2*d*x^2+d)*(a+b*asinh(c*x))/x^2,x)
 

Output:

(d*(asinh(c*x)*b*c**2*x**2 - asinh(c*x)*b - sqrt(c**2*x**2 + 1)*b*c*x + lo 
g(sqrt(c**2*x**2 + 1) + c*x - 1)*b*c*x - log(sqrt(c**2*x**2 + 1) + c*x + 1 
)*b*c*x + a*c**2*x**2 - a))/x