\(\int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx\) [383]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 54 \[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=-\frac {\text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{b c^2}+\frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{b c^2} \] Output:

-Chi((a+b*arcsinh(c*x))/b)*sinh(a/b)/b/c^2+cosh(a/b)*Shi((a+b*arcsinh(c*x) 
)/b)/b/c^2
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.85 \[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=-\frac {\text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right ) \sinh \left (\frac {a}{b}\right )-\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )}{b c^2} \] Input:

Integrate[x/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]
 

Output:

-((CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b] - Cosh[a/b]*SinhIntegral[a/b 
 + ArcSinh[c*x]])/(b*c^2))
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.50 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {6234, 25, 3042, 26, 3784, 26, 3042, 26, 3779, 3782}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\sqrt {c^2 x^2+1} (a+b \text {arcsinh}(c x))} \, dx\)

\(\Big \downarrow \) 6234

\(\displaystyle \frac {\int -\frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b c^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\sinh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int -\frac {i \sin \left (\frac {i a}{b}-\frac {i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b c^2}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \int \frac {\sin \left (\frac {i a}{b}-\frac {i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))}{b c^2}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {i \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\cosh \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))+\cosh \left (\frac {a}{b}\right ) \int -\frac {i \sinh \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b c^2}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\cosh \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-i \cosh \left (\frac {a}{b}\right ) \int \frac {\sinh \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-i \cosh \left (\frac {a}{b}\right ) \int -\frac {i \sin \left (\frac {i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b c^2}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-\cosh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arcsinh}(c x))}{b}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))\right )}{b c^2}\)

\(\Big \downarrow \) 3779

\(\displaystyle \frac {i \left (i \sinh \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {i (a+b \text {arcsinh}(c x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arcsinh}(c x)}d(a+b \text {arcsinh}(c x))-i \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )\right )}{b c^2}\)

\(\Big \downarrow \) 3782

\(\displaystyle \frac {i \left (i \sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )-i \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )\right )}{b c^2}\)

Input:

Int[x/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]
 

Output:

(I*(I*CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b] - I*Cosh[a/b]*SinhInt 
egral[(a + b*ArcSinh[c*x])/b]))/(b*c^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3779
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[I*(SinhIntegral[c*f*(fz/d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f 
, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 6234
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2* 
x^2)^p]   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1), x], 
x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 
Maple [A] (verified)

Time = 1.14 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.98

method result size
default \(\frac {{\mathrm e}^{\frac {a}{b}} \operatorname {expIntegral}_{1}\left (\operatorname {arcsinh}\left (x c \right )+\frac {a}{b}\right )-{\mathrm e}^{-\frac {a}{b}} \operatorname {expIntegral}_{1}\left (-\operatorname {arcsinh}\left (x c \right )-\frac {a}{b}\right )}{2 c^{2} b}\) \(53\)

Input:

int(x/(c^2*x^2+1)^(1/2)/(a+b*arcsinh(x*c)),x,method=_RETURNVERBOSE)
 

Output:

1/2*(exp(a/b)*Ei(1,arcsinh(x*c)+a/b)-exp(-a/b)*Ei(1,-arcsinh(x*c)-a/b))/c^ 
2/b
 

Fricas [F]

\[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {x}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \] Input:

integrate(x/(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="fricas")
 

Output:

integral(sqrt(c^2*x^2 + 1)*x/(a*c^2*x^2 + (b*c^2*x^2 + b)*arcsinh(c*x) + a 
), x)
 

Sympy [F]

\[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int \frac {x}{\left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \sqrt {c^{2} x^{2} + 1}}\, dx \] Input:

integrate(x/(c**2*x**2+1)**(1/2)/(a+b*asinh(c*x)),x)
 

Output:

Integral(x/((a + b*asinh(c*x))*sqrt(c**2*x**2 + 1)), x)
 

Maxima [F]

\[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {x}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \] Input:

integrate(x/(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate(x/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)
 

Giac [F]

\[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int { \frac {x}{\sqrt {c^{2} x^{2} + 1} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}} \,d x } \] Input:

integrate(x/(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="giac")
 

Output:

integrate(x/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int \frac {x}{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {c^2\,x^2+1}} \,d x \] Input:

int(x/((a + b*asinh(c*x))*(c^2*x^2 + 1)^(1/2)),x)
 

Output:

int(x/((a + b*asinh(c*x))*(c^2*x^2 + 1)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x}{\sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))} \, dx=\int \frac {x}{\sqrt {c^{2} x^{2}+1}\, \mathit {asinh} \left (c x \right ) b +\sqrt {c^{2} x^{2}+1}\, a}d x \] Input:

int(x/(c^2*x^2+1)^(1/2)/(a+b*asinh(c*x)),x)
 

Output:

int(x/(sqrt(c**2*x**2 + 1)*asinh(c*x)*b + sqrt(c**2*x**2 + 1)*a),x)