\(\int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx\) [120]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 84 \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=-\frac {2 (a+b \text {arccosh}(c+d x))}{d e \sqrt {e (c+d x)}}+\frac {4 b \sqrt {1-c-d x} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{d e^{3/2} \sqrt {-1+c+d x}} \] Output:

(-2*a-2*b*arccosh(d*x+c))/d/e/(e*(d*x+c))^(1/2)+4*b*(-d*x-c+1)^(1/2)*Ellip 
ticF((e*(d*x+c))^(1/2)/e^(1/2),I)/d/e^(3/2)/(d*x+c-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.11 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.10 \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\frac {2 \left (-a-b \text {arccosh}(c+d x)+\frac {2 b (c+d x) \sqrt {1-(c+d x)^2} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},(c+d x)^2\right )}{\sqrt {-1+c+d x} \sqrt {1+c+d x}}\right )}{d e \sqrt {e (c+d x)}} \] Input:

Integrate[(a + b*ArcCosh[c + d*x])/(c*e + d*e*x)^(3/2),x]
 

Output:

(2*(-a - b*ArcCosh[c + d*x] + (2*b*(c + d*x)*Sqrt[1 - (c + d*x)^2]*Hyperge 
ometric2F1[1/4, 1/2, 5/4, (c + d*x)^2])/(Sqrt[-1 + c + d*x]*Sqrt[1 + c + d 
*x])))/(d*e*Sqrt[e*(c + d*x)])
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {6411, 6298, 127, 126}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx\)

\(\Big \downarrow \) 6411

\(\displaystyle \frac {\int \frac {a+b \text {arccosh}(c+d x)}{(e (c+d x))^{3/2}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6298

\(\displaystyle \frac {\frac {2 b \int \frac {1}{\sqrt {c+d x-1} \sqrt {e (c+d x)} \sqrt {c+d x+1}}d(c+d x)}{e}-\frac {2 (a+b \text {arccosh}(c+d x))}{e \sqrt {e (c+d x)}}}{d}\)

\(\Big \downarrow \) 127

\(\displaystyle \frac {\frac {2 b \sqrt {-c-d x+1} \int \frac {1}{\sqrt {-c-d x+1} \sqrt {e (c+d x)} \sqrt {c+d x+1}}d(c+d x)}{e \sqrt {c+d x-1}}-\frac {2 (a+b \text {arccosh}(c+d x))}{e \sqrt {e (c+d x)}}}{d}\)

\(\Big \downarrow \) 126

\(\displaystyle \frac {\frac {4 b \sqrt {-c-d x+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right ),-1\right )}{e^{3/2} \sqrt {c+d x-1}}-\frac {2 (a+b \text {arccosh}(c+d x))}{e \sqrt {e (c+d x)}}}{d}\)

Input:

Int[(a + b*ArcCosh[c + d*x])/(c*e + d*e*x)^(3/2),x]
 

Output:

((-2*(a + b*ArcCosh[c + d*x]))/(e*Sqrt[e*(c + d*x)]) + (4*b*Sqrt[1 - c - d 
*x]*EllipticF[ArcSin[Sqrt[e*(c + d*x)]/Sqrt[e]], -1])/(e^(3/2)*Sqrt[-1 + c 
 + d*x]))/d
 

Defintions of rubi rules used

rule 126
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x 
_] :> Simp[(2/(b*Sqrt[e]))*Rt[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]* 
Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c, 0] & 
& GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])
 

rule 127
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x 
_] :> Simp[Sqrt[1 + d*(x/c)]*(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x 
]))   Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x], x] /; Free 
Q[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])
 

rule 6298
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
 :> Simp[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^n/(d*(m + 1))), x] - Simp[b*c* 
(n/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + 
 c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& NeQ[m, -1]
 

rule 6411
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
Maple [A] (verified)

Time = 2.09 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.42

method result size
derivativedivides \(\frac {-\frac {2 a}{\sqrt {d e x +c e}}+2 b \left (-\frac {\operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{\sqrt {d e x +c e}}+\frac {2 \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right ) \sqrt {\frac {-d e x -c e +e}{e}}}{e \sqrt {-\frac {1}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(119\)
default \(\frac {-\frac {2 a}{\sqrt {d e x +c e}}+2 b \left (-\frac {\operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{\sqrt {d e x +c e}}+\frac {2 \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right ) \sqrt {\frac {-d e x -c e +e}{e}}}{e \sqrt {-\frac {1}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(119\)
parts \(-\frac {2 a}{\sqrt {d e x +c e}\, d e}+\frac {2 b \left (-\frac {\operatorname {arccosh}\left (\frac {d e x +c e}{e}\right )}{\sqrt {d e x +c e}}+\frac {2 \operatorname {EllipticF}\left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right ) \sqrt {-\frac {d e x +c e -e}{e}}}{e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e -e}{e}}}\right )}{d e}\) \(124\)

Input:

int((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/d/e*(-a/(d*e*x+c*e)^(1/2)+b*(-1/(d*e*x+c*e)^(1/2)*arccosh((d*e*x+c*e)/e) 
+2/e*EllipticF((d*e*x+c*e)^(1/2)*(-1/e)^(1/2),I)*((-d*e*x-c*e+e)/e)^(1/2)/ 
(-1/e)^(1/2)/(-(-d*e*x-c*e+e)/e)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.31 \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=-\frac {2 \, {\left (\sqrt {d e x + c e} b d^{2} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) + \sqrt {d e x + c e} a d^{2} - 2 \, \sqrt {d^{3} e} {\left (b d x + b c\right )} {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )}}{d^{4} e^{2} x + c d^{3} e^{2}} \] Input:

integrate((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x, algorithm="fricas")
 

Output:

-2*(sqrt(d*e*x + c*e)*b*d^2*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1 
)) + sqrt(d*e*x + c*e)*a*d^2 - 2*sqrt(d^3*e)*(b*d*x + b*c)*weierstrassPInv 
erse(4/d^2, 0, (d*x + c)/d))/(d^4*e^2*x + c*d^3*e^2)
 

Sympy [F]

\[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\int \frac {a + b \operatorname {acosh}{\left (c + d x \right )}}{\left (e \left (c + d x\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((a+b*acosh(d*x+c))/(d*e*x+c*e)**(3/2),x)
 

Output:

Integral((a + b*acosh(c + d*x))/(e*(c + d*x))**(3/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\int { \frac {b \operatorname {arcosh}\left (d x + c\right ) + a}{{\left (d e x + c e\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*arccosh(d*x+c))/(d*e*x+c*e)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*arccosh(d*x + c) + a)/(d*e*x + c*e)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (c+d\,x\right )}{{\left (c\,e+d\,e\,x\right )}^{3/2}} \,d x \] Input:

int((a + b*acosh(c + d*x))/(c*e + d*e*x)^(3/2),x)
 

Output:

int((a + b*acosh(c + d*x))/(c*e + d*e*x)^(3/2), x)
 

Reduce [F]

\[ \int \frac {a+b \text {arccosh}(c+d x)}{(c e+d e x)^{3/2}} \, dx=\frac {\sqrt {d x +c}\, \left (\int \frac {\mathit {acosh} \left (d x +c \right )}{\sqrt {d x +c}\, c +\sqrt {d x +c}\, d x}d x \right ) b d -2 a}{\sqrt {e}\, \sqrt {d x +c}\, d e} \] Input:

int((a+b*acosh(d*x+c))/(d*e*x+c*e)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(c + d*x)*int(acosh(c + d*x)/(sqrt(c + d*x)*c + sqrt(c + d*x)*d*x),x) 
*b*d - 2*a)/(sqrt(e)*sqrt(c + d*x)*d*e)