\(\int \frac {\text {arccosh}(a+b x)}{x^3} \, dx\) [7]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 10, antiderivative size = 106 \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\frac {b \sqrt {-1+a+b x} \sqrt {1+a+b x}}{2 \left (1-a^2\right ) x}-\frac {\text {arccosh}(a+b x)}{2 x^2}-\frac {a b^2 \arctan \left (\frac {\sqrt {1-a} \sqrt {1+a+b x}}{\sqrt {1+a} \sqrt {-1+a+b x}}\right )}{\left (1-a^2\right )^{3/2}} \] Output:

1/2*b*(b*x+a-1)^(1/2)*(b*x+a+1)^(1/2)/(-a^2+1)/x-1/2*arccosh(b*x+a)/x^2-a* 
b^2*arctan((1-a)^(1/2)*(b*x+a+1)^(1/2)/(1+a)^(1/2)/(b*x+a-1)^(1/2))/(-a^2+ 
1)^(3/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.20 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.28 \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\frac {-\text {arccosh}(a+b x)+\frac {b x \left (-\sqrt {-1+a+b x} \sqrt {1+a+b x}+\frac {i a b x \log \left (\frac {4 i \sqrt {1-a^2} \left (-1+a^2+a b x-i \sqrt {1-a^2} \sqrt {-1+a+b x} \sqrt {1+a+b x}\right )}{a b^2 x}\right )}{\sqrt {1-a^2}}\right )}{-1+a^2}}{2 x^2} \] Input:

Integrate[ArcCosh[a + b*x]/x^3,x]
 

Output:

(-ArcCosh[a + b*x] + (b*x*(-(Sqrt[-1 + a + b*x]*Sqrt[1 + a + b*x]) + (I*a* 
b*x*Log[((4*I)*Sqrt[1 - a^2]*(-1 + a^2 + a*b*x - I*Sqrt[1 - a^2]*Sqrt[-1 + 
 a + b*x]*Sqrt[1 + a + b*x]))/(a*b^2*x)])/Sqrt[1 - a^2]))/(-1 + a^2))/(2*x 
^2)
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.700, Rules used = {6411, 25, 27, 6378, 107, 104, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx\)

\(\Big \downarrow \) 6411

\(\displaystyle \frac {\int \frac {\text {arccosh}(a+b x)}{x^3}d(a+b x)}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int -\frac {\text {arccosh}(a+b x)}{x^3}d(a+b x)}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle -b^2 \int -\frac {\text {arccosh}(a+b x)}{b^3 x^3}d(a+b x)\)

\(\Big \downarrow \) 6378

\(\displaystyle -b^2 \left (\frac {\text {arccosh}(a+b x)}{2 b^2 x^2}-\frac {1}{2} \int \frac {1}{b^2 x^2 \sqrt {a+b x-1} \sqrt {a+b x+1}}d(a+b x)\right )\)

\(\Big \downarrow \) 107

\(\displaystyle -b^2 \left (\frac {1}{2} \left (\frac {a \int -\frac {1}{b x \sqrt {a+b x-1} \sqrt {a+b x+1}}d(a+b x)}{1-a^2}-\frac {\sqrt {a+b x-1} \sqrt {a+b x+1}}{\left (1-a^2\right ) b x}\right )+\frac {\text {arccosh}(a+b x)}{2 b^2 x^2}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle -b^2 \left (\frac {1}{2} \left (\frac {2 a \int \frac {1}{a+\frac {(1-a) (a+b x+1)}{a+b x-1}+1}d\frac {\sqrt {a+b x+1}}{\sqrt {a+b x-1}}}{1-a^2}-\frac {\sqrt {a+b x-1} \sqrt {a+b x+1}}{\left (1-a^2\right ) b x}\right )+\frac {\text {arccosh}(a+b x)}{2 b^2 x^2}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle -b^2 \left (\frac {1}{2} \left (\frac {2 a \arctan \left (\frac {\sqrt {1-a} \sqrt {a+b x+1}}{\sqrt {a+1} \sqrt {a+b x-1}}\right )}{\left (1-a^2\right )^{3/2}}-\frac {\sqrt {a+b x-1} \sqrt {a+b x+1}}{\left (1-a^2\right ) b x}\right )+\frac {\text {arccosh}(a+b x)}{2 b^2 x^2}\right )\)

Input:

Int[ArcCosh[a + b*x]/x^3,x]
 

Output:

-(b^2*(ArcCosh[a + b*x]/(2*b^2*x^2) + (-((Sqrt[-1 + a + b*x]*Sqrt[1 + a + 
b*x])/((1 - a^2)*b*x)) + (2*a*ArcTan[(Sqrt[1 - a]*Sqrt[1 + a + b*x])/(Sqrt 
[1 + a]*Sqrt[-1 + a + b*x])])/(1 - a^2)^(3/2))/2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 107
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[(a*d*f*(m + 1) + b*c*f*(n + 
 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 
 1)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x 
] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || SumSimplerQ[m, 1])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 6378
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x 
_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x])^n/(e*(m + 1))), x] 
 - Simp[b*c*(n/(e*(m + 1)))   Int[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x])^( 
n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x] /; FreeQ[{a, b, c, d, e, m}, 
 x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 6411
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.07 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.62

method result size
parts \(-\frac {\operatorname {arccosh}\left (b x +a \right )}{2 x^{2}}+\frac {b \sqrt {b x +a -1}\, \sqrt {b x +a +1}\, \operatorname {csgn}\left (b \right )^{2} \left (\sqrt {a^{2}-1}\, \ln \left (\frac {2 a^{2}-2+2 a b x +2 \sqrt {a^{2}-1}\, \sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}}{x}\right ) a b x -a^{2} \sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}\right )}{2 x \left (a^{2}-1\right ) \left (1+a \right ) \left (a -1\right ) \sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}}\) \(172\)
derivativedivides \(b^{2} \left (-\frac {\operatorname {arccosh}\left (b x +a \right )}{2 b^{2} x^{2}}-\frac {\sqrt {b x +a +1}\, \sqrt {b x +a -1}\, \left (\sqrt {a^{2}-1}\, \ln \left (\frac {2 \sqrt {a^{2}-1}\, \sqrt {\left (b x +a \right )^{2}-1}+2 a \left (b x +a \right )-2}{b x}\right ) a^{2}-\sqrt {a^{2}-1}\, \ln \left (\frac {2 \sqrt {a^{2}-1}\, \sqrt {\left (b x +a \right )^{2}-1}+2 a \left (b x +a \right )-2}{b x}\right ) a \left (b x +a \right )+a^{2} \sqrt {\left (b x +a \right )^{2}-1}-\sqrt {\left (b x +a \right )^{2}-1}\right )}{2 b x \left (a^{2}-1\right ) \left (1+a \right ) \left (a -1\right ) \sqrt {\left (b x +a \right )^{2}-1}}\right )\) \(201\)
default \(b^{2} \left (-\frac {\operatorname {arccosh}\left (b x +a \right )}{2 b^{2} x^{2}}-\frac {\sqrt {b x +a +1}\, \sqrt {b x +a -1}\, \left (\sqrt {a^{2}-1}\, \ln \left (\frac {2 \sqrt {a^{2}-1}\, \sqrt {\left (b x +a \right )^{2}-1}+2 a \left (b x +a \right )-2}{b x}\right ) a^{2}-\sqrt {a^{2}-1}\, \ln \left (\frac {2 \sqrt {a^{2}-1}\, \sqrt {\left (b x +a \right )^{2}-1}+2 a \left (b x +a \right )-2}{b x}\right ) a \left (b x +a \right )+a^{2} \sqrt {\left (b x +a \right )^{2}-1}-\sqrt {\left (b x +a \right )^{2}-1}\right )}{2 b x \left (a^{2}-1\right ) \left (1+a \right ) \left (a -1\right ) \sqrt {\left (b x +a \right )^{2}-1}}\right )\) \(201\)

Input:

int(arccosh(b*x+a)/x^3,x,method=_RETURNVERBOSE)
 

Output:

-1/2*arccosh(b*x+a)/x^2+1/2*b*(b*x+a-1)^(1/2)*(b*x+a+1)^(1/2)*csgn(b)^2*(( 
a^2-1)^(1/2)*ln(2*(a*b*x+(a^2-1)^(1/2)*(b^2*x^2+2*a*b*x+a^2-1)^(1/2)+a^2-1 
)/x)*a*b*x-a^2*(b^2*x^2+2*a*b*x+a^2-1)^(1/2)+(b^2*x^2+2*a*b*x+a^2-1)^(1/2) 
)/x/(a^2-1)/(1+a)/(a-1)/(b^2*x^2+2*a*b*x+a^2-1)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 222 vs. \(2 (86) = 172\).

Time = 0.12 (sec) , antiderivative size = 460, normalized size of antiderivative = 4.34 \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\left [\frac {\sqrt {a^{2} - 1} a b^{2} x^{2} \log \left (\frac {a^{2} b x + a^{3} + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1} {\left (a^{2} + \sqrt {a^{2} - 1} a - 1\right )} + {\left (a b x + a^{2} - 1\right )} \sqrt {a^{2} - 1} - a}{x}\right ) - {\left (a^{2} - 1\right )} b^{2} x^{2} + {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2} \log \left (-b x - a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right ) - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1} {\left (a^{2} - 1\right )} b x - {\left (a^{4} - {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2} - 2 \, a^{2} + 1\right )} \log \left (b x + a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right )}{2 \, {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2}}, -\frac {2 \, \sqrt {-a^{2} + 1} a b^{2} x^{2} \arctan \left (-\frac {\sqrt {-a^{2} + 1} b x - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1} \sqrt {-a^{2} + 1}}{a^{2} - 1}\right ) + {\left (a^{2} - 1\right )} b^{2} x^{2} - {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2} \log \left (-b x - a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right ) + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1} {\left (a^{2} - 1\right )} b x + {\left (a^{4} - {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2} - 2 \, a^{2} + 1\right )} \log \left (b x + a + \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right )}{2 \, {\left (a^{4} - 2 \, a^{2} + 1\right )} x^{2}}\right ] \] Input:

integrate(arccosh(b*x+a)/x^3,x, algorithm="fricas")
 

Output:

[1/2*(sqrt(a^2 - 1)*a*b^2*x^2*log((a^2*b*x + a^3 + sqrt(b^2*x^2 + 2*a*b*x 
+ a^2 - 1)*(a^2 + sqrt(a^2 - 1)*a - 1) + (a*b*x + a^2 - 1)*sqrt(a^2 - 1) - 
 a)/x) - (a^2 - 1)*b^2*x^2 + (a^4 - 2*a^2 + 1)*x^2*log(-b*x - a + sqrt(b^2 
*x^2 + 2*a*b*x + a^2 - 1)) - sqrt(b^2*x^2 + 2*a*b*x + a^2 - 1)*(a^2 - 1)*b 
*x - (a^4 - (a^4 - 2*a^2 + 1)*x^2 - 2*a^2 + 1)*log(b*x + a + sqrt(b^2*x^2 
+ 2*a*b*x + a^2 - 1)))/((a^4 - 2*a^2 + 1)*x^2), -1/2*(2*sqrt(-a^2 + 1)*a*b 
^2*x^2*arctan(-(sqrt(-a^2 + 1)*b*x - sqrt(b^2*x^2 + 2*a*b*x + a^2 - 1)*sqr 
t(-a^2 + 1))/(a^2 - 1)) + (a^2 - 1)*b^2*x^2 - (a^4 - 2*a^2 + 1)*x^2*log(-b 
*x - a + sqrt(b^2*x^2 + 2*a*b*x + a^2 - 1)) + sqrt(b^2*x^2 + 2*a*b*x + a^2 
 - 1)*(a^2 - 1)*b*x + (a^4 - (a^4 - 2*a^2 + 1)*x^2 - 2*a^2 + 1)*log(b*x + 
a + sqrt(b^2*x^2 + 2*a*b*x + a^2 - 1)))/((a^4 - 2*a^2 + 1)*x^2)]
 

Sympy [F]

\[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\int \frac {\operatorname {acosh}{\left (a + b x \right )}}{x^{3}}\, dx \] Input:

integrate(acosh(b*x+a)/x**3,x)
 

Output:

Integral(acosh(a + b*x)/x**3, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(arccosh(b*x+a)/x^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a-1>0)', see `assume?` for more 
details)Is
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.60 \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=-{\left (\frac {a b \arctan \left (-\frac {x {\left | b \right |} - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}}{\sqrt {-a^{2} + 1}}\right )}{{\left (a^{2} - 1\right )} \sqrt {-a^{2} + 1}} - \frac {{\left (x {\left | b \right |} - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right )} a b + a^{2} {\left | b \right |} - {\left | b \right |}}{{\left ({\left (x {\left | b \right |} - \sqrt {b^{2} x^{2} + 2 \, a b x + a^{2} - 1}\right )}^{2} - a^{2} + 1\right )} {\left (a^{2} - 1\right )}}\right )} b - \frac {\log \left (b x + a + \sqrt {{\left (b x + a\right )}^{2} - 1}\right )}{2 \, x^{2}} \] Input:

integrate(arccosh(b*x+a)/x^3,x, algorithm="giac")
 

Output:

-(a*b*arctan(-(x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 - 1))/sqrt(-a^2 + 1 
))/((a^2 - 1)*sqrt(-a^2 + 1)) - ((x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 
- 1))*a*b + a^2*abs(b) - abs(b))/(((x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^ 
2 - 1))^2 - a^2 + 1)*(a^2 - 1)))*b - 1/2*log(b*x + a + sqrt((b*x + a)^2 - 
1))/x^2
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\int \frac {\mathrm {acosh}\left (a+b\,x\right )}{x^3} \,d x \] Input:

int(acosh(a + b*x)/x^3,x)
 

Output:

int(acosh(a + b*x)/x^3, x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.37 \[ \int \frac {\text {arccosh}(a+b x)}{x^3} \, dx=\frac {-\mathit {acosh} \left (b x +a \right ) a^{4}+2 \mathit {acosh} \left (b x +a \right ) a^{2}-\mathit {acosh} \left (b x +a \right )-2 \sqrt {-a^{2}+1}\, \mathit {atan} \left (\frac {\sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}+b x}{\sqrt {-a^{2}+1}}\right ) a \,b^{2} x^{2}+\sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}\, a^{2} b x -\sqrt {b^{2} x^{2}+2 a b x +a^{2}-1}\, b x}{2 x^{2} \left (a^{4}-2 a^{2}+1\right )} \] Input:

int(acosh(b*x+a)/x^3,x)
 

Output:

( - acosh(a + b*x)*a**4 + 2*acosh(a + b*x)*a**2 - acosh(a + b*x) - 2*sqrt( 
 - a**2 + 1)*atan((sqrt(a**2 + 2*a*b*x + b**2*x**2 - 1) + b*x)/sqrt( - a** 
2 + 1))*a*b**2*x**2 + sqrt(a**2 + 2*a*b*x + b**2*x**2 - 1)*a**2*b*x - sqrt 
(a**2 + 2*a*b*x + b**2*x**2 - 1)*b*x)/(2*x**2*(a**4 - 2*a**2 + 1))