\(\int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx\) [51]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 69 \[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=-\frac {e \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right ) \sinh \left (\frac {2 a}{b}\right )}{2 b d}+\frac {e \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{2 b d} \] Output:

-1/2*e*Chi(2*(a+b*arccosh(d*x+c))/b)*sinh(2*a/b)/b/d+1/2*e*cosh(2*a/b)*Shi 
(2*(a+b*arccosh(d*x+c))/b)/b/d
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.88 \[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=-\frac {e \left (\text {Chi}\left (\frac {2 a}{b}+2 \text {arccosh}(c+d x)\right ) \sinh \left (\frac {2 a}{b}\right )-\cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \text {arccosh}(c+d x)\right )\right )}{2 b d} \] Input:

Integrate[(c*e + d*e*x)/(a + b*ArcCosh[c + d*x]),x]
 

Output:

-1/2*(e*(CoshIntegral[(2*a)/b + 2*ArcCosh[c + d*x]]*Sinh[(2*a)/b] - Cosh[( 
2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcCosh[c + d*x]]))/(b*d)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.99, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {6411, 27, 6302, 25, 5971, 27, 3042, 26, 3784, 26, 3042, 26, 3779, 3782}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx\)

\(\Big \downarrow \) 6411

\(\displaystyle \frac {\int \frac {e (c+d x)}{a+b \text {arccosh}(c+d x)}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int \frac {c+d x}{a+b \text {arccosh}(c+d x)}d(c+d x)}{d}\)

\(\Big \downarrow \) 6302

\(\displaystyle \frac {e \int -\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arccosh}(c+d x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arccosh}(c+d x)}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))}{b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {e \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arccosh}(c+d x)}{b}\right ) \sinh \left (\frac {a}{b}-\frac {a+b \text {arccosh}(c+d x)}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))}{b d}\)

\(\Big \downarrow \) 5971

\(\displaystyle -\frac {e \int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{2 (a+b \text {arccosh}(c+d x))}d(a+b \text {arccosh}(c+d x))}{b d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {e \int \frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))}{2 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e \int -\frac {i \sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))}{2 b d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i e \int \frac {\sin \left (\frac {2 i a}{b}-\frac {2 i (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))}{2 b d}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {i e \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))+\cosh \left (\frac {2 a}{b}\right ) \int -\frac {i \sinh \left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))\right )}{2 b d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i e \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\cosh \left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))-i \cosh \left (\frac {2 a}{b}\right ) \int \frac {\sinh \left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))\right )}{2 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {i e \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arccosh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))-i \cosh \left (\frac {2 a}{b}\right ) \int -\frac {i \sin \left (\frac {2 i (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))\right )}{2 b d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {i e \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arccosh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))-\cosh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arccosh}(c+d x))}{b}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))\right )}{2 b d}\)

\(\Big \downarrow \) 3779

\(\displaystyle \frac {i e \left (i \sinh \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 i (a+b \text {arccosh}(c+d x))}{b}+\frac {\pi }{2}\right )}{a+b \text {arccosh}(c+d x)}d(a+b \text {arccosh}(c+d x))-i \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )\right )}{2 b d}\)

\(\Big \downarrow \) 3782

\(\displaystyle \frac {i e \left (i \sinh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )-i \cosh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arccosh}(c+d x))}{b}\right )\right )}{2 b d}\)

Input:

Int[(c*e + d*e*x)/(a + b*ArcCosh[c + d*x]),x]
 

Output:

((I/2)*e*(I*CoshIntegral[(2*(a + b*ArcCosh[c + d*x]))/b]*Sinh[(2*a)/b] - I 
*Cosh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcCosh[c + d*x]))/b]))/(b*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3779
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[I*(SinhIntegral[c*f*(fz/d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f 
, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
 

rule 3782
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbo 
l] :> Simp[CoshIntegral[c*f*(fz/d) + f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz 
}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6302
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, 
 a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 6411
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.96

method result size
derivativedivides \(\frac {\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {expIntegral}_{1}\left (2 \,\operatorname {arccosh}\left (d x +c \right )+\frac {2 a}{b}\right )}{4 b}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {expIntegral}_{1}\left (-2 \,\operatorname {arccosh}\left (d x +c \right )-\frac {2 a}{b}\right )}{4 b}}{d}\) \(66\)
default \(\frac {\frac {e \,{\mathrm e}^{\frac {2 a}{b}} \operatorname {expIntegral}_{1}\left (2 \,\operatorname {arccosh}\left (d x +c \right )+\frac {2 a}{b}\right )}{4 b}-\frac {e \,{\mathrm e}^{-\frac {2 a}{b}} \operatorname {expIntegral}_{1}\left (-2 \,\operatorname {arccosh}\left (d x +c \right )-\frac {2 a}{b}\right )}{4 b}}{d}\) \(66\)

Input:

int((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/4*e/b*exp(2*a/b)*Ei(1,2*arccosh(d*x+c)+2*a/b)-1/4*e/b*exp(-2*a/b)*E 
i(1,-2*arccosh(d*x+c)-2*a/b))
 

Fricas [F]

\[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=\int { \frac {d e x + c e}{b \operatorname {arcosh}\left (d x + c\right ) + a} \,d x } \] Input:

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x, algorithm="fricas")
 

Output:

integral((d*e*x + c*e)/(b*arccosh(d*x + c) + a), x)
 

Sympy [F]

\[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=e \left (\int \frac {c}{a + b \operatorname {acosh}{\left (c + d x \right )}}\, dx + \int \frac {d x}{a + b \operatorname {acosh}{\left (c + d x \right )}}\, dx\right ) \] Input:

integrate((d*e*x+c*e)/(a+b*acosh(d*x+c)),x)
 

Output:

e*(Integral(c/(a + b*acosh(c + d*x)), x) + Integral(d*x/(a + b*acosh(c + d 
*x)), x))
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=\int { \frac {d e x + c e}{b \operatorname {arcosh}\left (d x + c\right ) + a} \,d x } \] Input:

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x, algorithm="maxima")
 

Output:

integrate((d*e*x + c*e)/(b*arccosh(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=\int { \frac {d e x + c e}{b \operatorname {arcosh}\left (d x + c\right ) + a} \,d x } \] Input:

integrate((d*e*x+c*e)/(a+b*arccosh(d*x+c)),x, algorithm="giac")
 

Output:

integrate((d*e*x + c*e)/(b*arccosh(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=\int \frac {c\,e+d\,e\,x}{a+b\,\mathrm {acosh}\left (c+d\,x\right )} \,d x \] Input:

int((c*e + d*e*x)/(a + b*acosh(c + d*x)),x)
 

Output:

int((c*e + d*e*x)/(a + b*acosh(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {c e+d e x}{a+b \text {arccosh}(c+d x)} \, dx=e \left (\left (\int \frac {x}{\mathit {acosh} \left (d x +c \right ) b +a}d x \right ) d +\left (\int \frac {1}{\mathit {acosh} \left (d x +c \right ) b +a}d x \right ) c \right ) \] Input:

int((d*e*x+c*e)/(a+b*acosh(d*x+c)),x)
 

Output:

e*(int(x/(acosh(c + d*x)*b + a),x)*d + int(1/(acosh(c + d*x)*b + a),x)*c)