\(\int \frac {x (a+b \text {arccosh}(c x))^2}{(d-c^2 d x^2)^{5/2}} \, dx\) [204]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [C] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 286 \[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=-\frac {b^2}{3 c^2 d^2 \sqrt {d-c^2 d x^2}}-\frac {b x (a+b \text {arccosh}(c x))}{3 c d^2 \sqrt {-1+c x} \sqrt {1+c x} \sqrt {d-c^2 d x^2}}+\frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 b \sqrt {-1+c x} \sqrt {1+c x} (a+b \text {arccosh}(c x)) \text {arctanh}\left (e^{\text {arccosh}(c x)}\right )}{3 c^2 d^2 \sqrt {d-c^2 d x^2}}+\frac {b^2 \sqrt {-1+c x} \sqrt {1+c x} \operatorname {PolyLog}\left (2,-e^{\text {arccosh}(c x)}\right )}{3 c^2 d^2 \sqrt {d-c^2 d x^2}}-\frac {b^2 \sqrt {-1+c x} \sqrt {1+c x} \operatorname {PolyLog}\left (2,e^{\text {arccosh}(c x)}\right )}{3 c^2 d^2 \sqrt {d-c^2 d x^2}} \] Output:

-1/3*b^2/c^2/d^2/(-c^2*d*x^2+d)^(1/2)-1/3*b*x*(a+b*arccosh(c*x))/c/d^2/(c* 
x-1)^(1/2)/(c*x+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+1/3*(a+b*arccosh(c*x))^2/c^2 
/d/(-c^2*d*x^2+d)^(3/2)+2/3*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(a+b*arccosh(c*x 
))*arctanh(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/c^2/d^2/(-c^2*d*x^2+d)^(1/2)+1 
/3*b^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*polylog(2,-c*x-(c*x-1)^(1/2)*(c*x+1)^(1 
/2))/c^2/d^2/(-c^2*d*x^2+d)^(1/2)-1/3*b^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*poly 
log(2,c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/c^2/d^2/(-c^2*d*x^2+d)^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 2.38 (sec) , antiderivative size = 388, normalized size of antiderivative = 1.36 \[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {4 a^2+b^2 \left (-2+4 \text {arccosh}(c x)^2+2 \cosh (2 \text {arccosh}(c x))-3 \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \text {arccosh}(c x) \log \left (1-e^{-\text {arccosh}(c x)}\right )+3 \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \text {arccosh}(c x) \log \left (1+e^{-\text {arccosh}(c x)}\right )+4 \left (\frac {-1+c x}{1+c x}\right )^{3/2} (1+c x)^3 \operatorname {PolyLog}\left (2,-e^{-\text {arccosh}(c x)}\right )-4 \left (\frac {-1+c x}{1+c x}\right )^{3/2} (1+c x)^3 \operatorname {PolyLog}\left (2,e^{-\text {arccosh}(c x)}\right )+2 \text {arccosh}(c x) \sinh (2 \text {arccosh}(c x))+\text {arccosh}(c x) \log \left (1-e^{-\text {arccosh}(c x)}\right ) \sinh (3 \text {arccosh}(c x))-\text {arccosh}(c x) \log \left (1+e^{-\text {arccosh}(c x)}\right ) \sinh (3 \text {arccosh}(c x))\right )+a b \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \left (4 c x+3 \left (\log \left (\cosh \left (\frac {1}{2} \text {arccosh}(c x)\right )\right )-\log \left (\sinh \left (\frac {1}{2} \text {arccosh}(c x)\right )\right )\right )+\frac {8 \text {arccosh}(c x)+\left (-\log \left (\cosh \left (\frac {1}{2} \text {arccosh}(c x)\right )\right )+\log \left (\sinh \left (\frac {1}{2} \text {arccosh}(c x)\right )\right )\right ) \sinh (3 \text {arccosh}(c x))}{\sqrt {\frac {-1+c x}{1+c x}} (1+c x)}\right )}{12 c^2 d \left (d-c^2 d x^2\right )^{3/2}} \] Input:

Integrate[(x*(a + b*ArcCosh[c*x])^2)/(d - c^2*d*x^2)^(5/2),x]
 

Output:

(4*a^2 + b^2*(-2 + 4*ArcCosh[c*x]^2 + 2*Cosh[2*ArcCosh[c*x]] - 3*Sqrt[(-1 
+ c*x)/(1 + c*x)]*(1 + c*x)*ArcCosh[c*x]*Log[1 - E^(-ArcCosh[c*x])] + 3*Sq 
rt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*ArcCosh[c*x]*Log[1 + E^(-ArcCosh[c*x])] 
 + 4*((-1 + c*x)/(1 + c*x))^(3/2)*(1 + c*x)^3*PolyLog[2, -E^(-ArcCosh[c*x] 
)] - 4*((-1 + c*x)/(1 + c*x))^(3/2)*(1 + c*x)^3*PolyLog[2, E^(-ArcCosh[c*x 
])] + 2*ArcCosh[c*x]*Sinh[2*ArcCosh[c*x]] + ArcCosh[c*x]*Log[1 - E^(-ArcCo 
sh[c*x])]*Sinh[3*ArcCosh[c*x]] - ArcCosh[c*x]*Log[1 + E^(-ArcCosh[c*x])]*S 
inh[3*ArcCosh[c*x]]) + a*b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(4*c*x + 3 
*(Log[Cosh[ArcCosh[c*x]/2]] - Log[Sinh[ArcCosh[c*x]/2]]) + (8*ArcCosh[c*x] 
 + (-Log[Cosh[ArcCosh[c*x]/2]] + Log[Sinh[ArcCosh[c*x]/2]])*Sinh[3*ArcCosh 
[c*x]])/(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))))/(12*c^2*d*(d - c^2*d*x^2) 
^(3/2))
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.95 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.66, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {6329, 6304, 6316, 83, 6318, 3042, 26, 4670, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 6329

\(\displaystyle \frac {2 b \sqrt {c x-1} \sqrt {c x+1} \int \frac {a+b \text {arccosh}(c x)}{(1-c x)^2 (c x+1)^2}dx}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6304

\(\displaystyle \frac {2 b \sqrt {c x-1} \sqrt {c x+1} \int \frac {a+b \text {arccosh}(c x)}{\left (1-c^2 x^2\right )^2}dx}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6316

\(\displaystyle \frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (\frac {1}{2} \int \frac {a+b \text {arccosh}(c x)}{1-c^2 x^2}dx+\frac {1}{2} b c \int \frac {x}{(c x-1)^{3/2} (c x+1)^{3/2}}dx+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 83

\(\displaystyle \frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (\frac {1}{2} \int \frac {a+b \text {arccosh}(c x)}{1-c^2 x^2}dx+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 6318

\(\displaystyle \frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (-\frac {\int \frac {a+b \text {arccosh}(c x)}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)}d\text {arccosh}(c x)}{2 c}+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (-\frac {\int i (a+b \text {arccosh}(c x)) \csc (i \text {arccosh}(c x))d\text {arccosh}(c x)}{2 c}+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (-\frac {i \int (a+b \text {arccosh}(c x)) \csc (i \text {arccosh}(c x))d\text {arccosh}(c x)}{2 c}+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 4670

\(\displaystyle \frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (-\frac {i \left (i b \int \log \left (1-e^{\text {arccosh}(c x)}\right )d\text {arccosh}(c x)-i b \int \log \left (1+e^{\text {arccosh}(c x)}\right )d\text {arccosh}(c x)+2 i \text {arctanh}\left (e^{\text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))\right )}{2 c}+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (-\frac {i \left (i b \int e^{-\text {arccosh}(c x)} \log \left (1-e^{\text {arccosh}(c x)}\right )de^{\text {arccosh}(c x)}-i b \int e^{-\text {arccosh}(c x)} \log \left (1+e^{\text {arccosh}(c x)}\right )de^{\text {arccosh}(c x)}+2 i \text {arctanh}\left (e^{\text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))\right )}{2 c}+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {(a+b \text {arccosh}(c x))^2}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 b \sqrt {c x-1} \sqrt {c x+1} \left (-\frac {i \left (2 i \text {arctanh}\left (e^{\text {arccosh}(c x)}\right ) (a+b \text {arccosh}(c x))+i b \operatorname {PolyLog}\left (2,-e^{\text {arccosh}(c x)}\right )-i b \operatorname {PolyLog}\left (2,e^{\text {arccosh}(c x)}\right )\right )}{2 c}+\frac {x (a+b \text {arccosh}(c x))}{2 \left (1-c^2 x^2\right )}-\frac {b}{2 c \sqrt {c x-1} \sqrt {c x+1}}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}\)

Input:

Int[(x*(a + b*ArcCosh[c*x])^2)/(d - c^2*d*x^2)^(5/2),x]
 

Output:

(a + b*ArcCosh[c*x])^2/(3*c^2*d*(d - c^2*d*x^2)^(3/2)) + (2*b*Sqrt[-1 + c* 
x]*Sqrt[1 + c*x]*(-1/2*b/(c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (x*(a + b*ArcC 
osh[c*x]))/(2*(1 - c^2*x^2)) - ((I/2)*((2*I)*(a + b*ArcCosh[c*x])*ArcTanh[ 
E^ArcCosh[c*x]] + I*b*PolyLog[2, -E^ArcCosh[c*x]] - I*b*PolyLog[2, E^ArcCo 
sh[c*x]]))/c))/(3*c*d^2*Sqrt[d - c^2*d*x^2])
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 83
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] && EqQ[a*d*f 
*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4670
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x 
_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] 
 + (-Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*fz*x 
)], x], x] + Simp[d*(m/(f*fz*I))   Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e 
+ f*fz*x)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
 

rule 6304
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*( 
(d2_) + (e2_.)*(x_))^(p_.), x_Symbol] :> Int[(d1*d2 + e1*e2*x^2)^p*(a + b*A 
rcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + 
 d1*e2, 0] && IntegerQ[p]
 

rule 6316
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x 
_Symbol] :> Simp[(-x)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*d*(p + 
 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1))   Int[(d + e*x^2)^(p + 1)*(a + b* 
ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/((1 + 
 c*x)^p*(-1 + c*x)^p)]   Int[x*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a 
+ b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2* 
d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]
 

rule 6318
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symb 
ol] :> Simp[-(c*d)^(-1)   Subst[Int[(a + b*x)^n*Csch[x], x], x, ArcCosh[c*x 
]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 6329
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p 
+ 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + 
 c*x)^p)]   Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x 
])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && 
GtQ[n, 0] && NeQ[p, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(581\) vs. \(2(285)=570\).

Time = 0.62 (sec) , antiderivative size = 582, normalized size of antiderivative = 2.03

method result size
default \(\frac {a^{2}}{3 c^{2} d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+b^{2} \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\operatorname {arccosh}\left (c x \right ) \sqrt {c x +1}\, \sqrt {c x -1}\, c x +c^{2} x^{2}+\operatorname {arccosh}\left (c x \right )^{2}-1\right )}{3 \left (c^{2} x^{2}-1\right )^{2} d^{3} c^{2}}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {polylog}\left (2, -c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \ln \left (1-c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {polylog}\left (2, c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +2 \,\operatorname {arccosh}\left (c x \right )\right )}{6 \left (c^{2} x^{2}-1\right )^{2} d^{3} c^{2}}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\sqrt {c x -1}\, \sqrt {c x +1}+c x -1\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(582\)
parts \(\frac {a^{2}}{3 c^{2} d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+b^{2} \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\operatorname {arccosh}\left (c x \right ) \sqrt {c x +1}\, \sqrt {c x -1}\, c x +c^{2} x^{2}+\operatorname {arccosh}\left (c x \right )^{2}-1\right )}{3 \left (c^{2} x^{2}-1\right )^{2} d^{3} c^{2}}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {polylog}\left (2, -c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \ln \left (1-c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {polylog}\left (2, c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{3 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +2 \,\operatorname {arccosh}\left (c x \right )\right )}{6 \left (c^{2} x^{2}-1\right )^{2} d^{3} c^{2}}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\sqrt {c x -1}\, \sqrt {c x +1}+c x -1\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{6 d^{3} c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(582\)

Input:

int(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/3*a^2/c^2/d/(-c^2*d*x^2+d)^(3/2)+b^2*(1/3*(-d*(c^2*x^2-1))^(1/2)*(arccos 
h(c*x)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*c*x+c^2*x^2+arccosh(c*x)^2-1)/(c^2*x^2- 
1)^2/d^3/c^2-1/3*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^ 
2/(c^2*x^2-1)*arccosh(c*x)*ln(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))-1/3*(-d*( 
c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^2/(c^2*x^2-1)*polylog( 
2,-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))+1/3*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/ 
2)*(c*x+1)^(1/2)/d^3/c^2/(c^2*x^2-1)*arccosh(c*x)*ln(1-c*x-(c*x-1)^(1/2)*( 
c*x+1)^(1/2))+1/3*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c 
^2/(c^2*x^2-1)*polylog(2,c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))+2*a*b*(1/6*(-d* 
(c^2*x^2-1))^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+2*arccosh(c*x))/(c^2*x 
^2-1)^2/d^3/c^2+1/6*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3 
/c^2/(c^2*x^2-1)*ln((c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x-1)-1/6*(-d*(c^2*x^2-1) 
)^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c^2/(c^2*x^2-1)*ln(1+c*x+(c*x-1)^( 
1/2)*(c*x+1)^(1/2)))
 

Fricas [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas 
")
 

Output:

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*x*arccosh(c*x)^2 + 2*a*b*x*arccosh(c*x 
) + a^2*x)/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^2*d^3*x^2 - d^3), x)
 

Sympy [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(x*(a+b*acosh(c*x))**2/(-c**2*d*x**2+d)**(5/2),x)
 

Output:

Integral(x*(a + b*acosh(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)
 

Maxima [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima 
")
 

Output:

1/3*a^2/((-c^2*d*x^2 + d)^(3/2)*c^2*d) + integrate(b^2*x*log(c*x + sqrt(c* 
x + 1)*sqrt(c*x - 1))^2/(-c^2*d*x^2 + d)^(5/2) + 2*a*b*x*log(c*x + sqrt(c* 
x + 1)*sqrt(c*x - 1))/(-c^2*d*x^2 + d)^(5/2), x)
 

Giac [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")
 

Output:

integrate((b*arccosh(c*x) + a)^2*x/(-c^2*d*x^2 + d)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {x\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \] Input:

int((x*(a + b*acosh(c*x))^2)/(d - c^2*d*x^2)^(5/2),x)
 

Output:

int((x*(a + b*acosh(c*x))^2)/(d - c^2*d*x^2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {6 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acosh} \left (c x \right ) x}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) a b \,c^{4} x^{2}-6 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acosh} \left (c x \right ) x}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) a b \,c^{2}+3 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acosh} \left (c x \right )^{2} x}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2} c^{4} x^{2}-3 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acosh} \left (c x \right )^{2} x}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2} c^{2}-a^{2}}{3 \sqrt {d}\, \sqrt {-c^{2} x^{2}+1}\, c^{2} d^{2} \left (c^{2} x^{2}-1\right )} \] Input:

int(x*(a+b*acosh(c*x))^2/(-c^2*d*x^2+d)^(5/2),x)
 

Output:

(6*sqrt( - c**2*x**2 + 1)*int((acosh(c*x)*x)/(sqrt( - c**2*x**2 + 1)*c**4* 
x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - c**2*x**2 + 1)),x)*a*b 
*c**4*x**2 - 6*sqrt( - c**2*x**2 + 1)*int((acosh(c*x)*x)/(sqrt( - c**2*x** 
2 + 1)*c**4*x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - c**2*x**2 
+ 1)),x)*a*b*c**2 + 3*sqrt( - c**2*x**2 + 1)*int((acosh(c*x)**2*x)/(sqrt( 
- c**2*x**2 + 1)*c**4*x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - 
c**2*x**2 + 1)),x)*b**2*c**4*x**2 - 3*sqrt( - c**2*x**2 + 1)*int((acosh(c* 
x)**2*x)/(sqrt( - c**2*x**2 + 1)*c**4*x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2 
*x**2 + sqrt( - c**2*x**2 + 1)),x)*b**2*c**2 - a**2)/(3*sqrt(d)*sqrt( - c* 
*2*x**2 + 1)*c**2*d**2*(c**2*x**2 - 1))