\(\int \frac {x^3 (d-c^2 d x^2)}{(a+b \text {arccosh}(c x))^{3/2}} \, dx\) [307]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 259 \[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=\frac {2 d x^3 (-1+c x)^{3/2} (1+c x)^{3/2}}{b c \sqrt {a+b \text {arccosh}(c x)}}+\frac {3 d e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )}{16 b^{3/2} c^4}-\frac {d e^{\frac {6 a}{b}} \sqrt {\frac {3 \pi }{2}} \text {erf}\left (\frac {\sqrt {6} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )}{16 b^{3/2} c^4}+\frac {3 d e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )}{16 b^{3/2} c^4}-\frac {d e^{-\frac {6 a}{b}} \sqrt {\frac {3 \pi }{2}} \text {erfi}\left (\frac {\sqrt {6} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )}{16 b^{3/2} c^4} \] Output:

2*d*x^3*(c*x-1)^(3/2)*(c*x+1)^(3/2)/b/c/(a+b*arccosh(c*x))^(1/2)+3/32*d*ex 
p(2*a/b)*2^(1/2)*Pi^(1/2)*erf(2^(1/2)*(a+b*arccosh(c*x))^(1/2)/b^(1/2))/b^ 
(3/2)/c^4-1/32*d*exp(6*a/b)*6^(1/2)*Pi^(1/2)*erf(6^(1/2)*(a+b*arccosh(c*x) 
)^(1/2)/b^(1/2))/b^(3/2)/c^4+3/32*d*2^(1/2)*Pi^(1/2)*erfi(2^(1/2)*(a+b*arc 
cosh(c*x))^(1/2)/b^(1/2))/b^(3/2)/c^4/exp(2*a/b)-1/32*d*6^(1/2)*Pi^(1/2)*e 
rfi(6^(1/2)*(a+b*arccosh(c*x))^(1/2)/b^(1/2))/b^(3/2)/c^4/exp(6*a/b)
 

Mathematica [A] (warning: unable to verify)

Time = 1.72 (sec) , antiderivative size = 300, normalized size of antiderivative = 1.16 \[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=\frac {d e^{-\frac {6 a}{b}} \left (-\sqrt {6} \sqrt {-\frac {a+b \text {arccosh}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {6 (a+b \text {arccosh}(c x))}{b}\right )+3 \sqrt {2} e^{\frac {4 a}{b}} \sqrt {-\frac {a+b \text {arccosh}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {2 (a+b \text {arccosh}(c x))}{b}\right )+e^{\frac {6 a}{b}} \left (-64 c^3 x^3 \sqrt {\frac {-1+c x}{1+c x}}-64 c^4 x^4 \sqrt {\frac {-1+c x}{1+c x}}-3 \sqrt {2} e^{\frac {2 a}{b}} \sqrt {\frac {a}{b}+\text {arccosh}(c x)} \Gamma \left (\frac {1}{2},\frac {2 (a+b \text {arccosh}(c x))}{b}\right )+\sqrt {6} e^{\frac {6 a}{b}} \sqrt {\frac {a}{b}+\text {arccosh}(c x)} \Gamma \left (\frac {1}{2},\frac {6 (a+b \text {arccosh}(c x))}{b}\right )+10 \sinh (2 \text {arccosh}(c x))+8 \sinh (4 \text {arccosh}(c x))+2 \sinh (6 \text {arccosh}(c x))\right )\right )}{32 b c^4 \sqrt {a+b \text {arccosh}(c x)}} \] Input:

Integrate[(x^3*(d - c^2*d*x^2))/(a + b*ArcCosh[c*x])^(3/2),x]
 

Output:

(d*(-(Sqrt[6]*Sqrt[-((a + b*ArcCosh[c*x])/b)]*Gamma[1/2, (-6*(a + b*ArcCos 
h[c*x]))/b]) + 3*Sqrt[2]*E^((4*a)/b)*Sqrt[-((a + b*ArcCosh[c*x])/b)]*Gamma 
[1/2, (-2*(a + b*ArcCosh[c*x]))/b] + E^((6*a)/b)*(-64*c^3*x^3*Sqrt[(-1 + c 
*x)/(1 + c*x)] - 64*c^4*x^4*Sqrt[(-1 + c*x)/(1 + c*x)] - 3*Sqrt[2]*E^((2*a 
)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, (2*(a + b*ArcCosh[c*x]))/b] + Sqr 
t[6]*E^((6*a)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, (6*(a + b*ArcCosh[c*x 
]))/b] + 10*Sinh[2*ArcCosh[c*x]] + 8*Sinh[4*ArcCosh[c*x]] + 2*Sinh[6*ArcCo 
sh[c*x]])))/(32*b*c^4*E^((6*a)/b)*Sqrt[a + b*ArcCosh[c*x]])
 

Rubi [A] (verified)

Time = 2.11 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.79, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6357, 6368, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx\)

\(\Big \downarrow \) 6357

\(\displaystyle -\frac {12 c d \int \frac {x^4 \sqrt {c x-1} \sqrt {c x+1}}{\sqrt {a+b \text {arccosh}(c x)}}dx}{b}+\frac {6 d \int \frac {x^2 \sqrt {c x-1} \sqrt {c x+1}}{\sqrt {a+b \text {arccosh}(c x)}}dx}{b c}+\frac {2 d x^3 (c x-1)^{3/2} (c x+1)^{3/2}}{b c \sqrt {a+b \text {arccosh}(c x)}}\)

\(\Big \downarrow \) 6368

\(\displaystyle -\frac {12 d \int \frac {\cosh ^4\left (\frac {a}{b}-\frac {a+b \text {arccosh}(c x)}{b}\right ) \sinh ^2\left (\frac {a}{b}-\frac {a+b \text {arccosh}(c x)}{b}\right )}{\sqrt {a+b \text {arccosh}(c x)}}d(a+b \text {arccosh}(c x))}{b^2 c^4}+\frac {6 d \int \frac {\cosh ^2\left (\frac {a}{b}-\frac {a+b \text {arccosh}(c x)}{b}\right ) \sinh ^2\left (\frac {a}{b}-\frac {a+b \text {arccosh}(c x)}{b}\right )}{\sqrt {a+b \text {arccosh}(c x)}}d(a+b \text {arccosh}(c x))}{b^2 c^4}+\frac {2 d x^3 (c x-1)^{3/2} (c x+1)^{3/2}}{b c \sqrt {a+b \text {arccosh}(c x)}}\)

\(\Big \downarrow \) 5971

\(\displaystyle \frac {6 d \int \left (\frac {\cosh \left (\frac {4 a}{b}-\frac {4 (a+b \text {arccosh}(c x))}{b}\right )}{8 \sqrt {a+b \text {arccosh}(c x)}}-\frac {1}{8 \sqrt {a+b \text {arccosh}(c x)}}\right )d(a+b \text {arccosh}(c x))}{b^2 c^4}-\frac {12 d \int \left (\frac {\cosh \left (\frac {6 a}{b}-\frac {6 (a+b \text {arccosh}(c x))}{b}\right )}{32 \sqrt {a+b \text {arccosh}(c x)}}+\frac {\cosh \left (\frac {4 a}{b}-\frac {4 (a+b \text {arccosh}(c x))}{b}\right )}{16 \sqrt {a+b \text {arccosh}(c x)}}-\frac {\cosh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arccosh}(c x))}{b}\right )}{32 \sqrt {a+b \text {arccosh}(c x)}}-\frac {1}{16 \sqrt {a+b \text {arccosh}(c x)}}\right )d(a+b \text {arccosh}(c x))}{b^2 c^4}+\frac {2 d x^3 (c x-1)^{3/2} (c x+1)^{3/2}}{b c \sqrt {a+b \text {arccosh}(c x)}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {6 d \left (\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )-\frac {1}{4} \sqrt {a+b \text {arccosh}(c x)}\right )}{b^2 c^4}-\frac {12 d \left (\frac {1}{64} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )-\frac {1}{64} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )+\frac {1}{64} \sqrt {\frac {\pi }{6}} \sqrt {b} e^{\frac {6 a}{b}} \text {erf}\left (\frac {\sqrt {6} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )+\frac {1}{64} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )-\frac {1}{64} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )+\frac {1}{64} \sqrt {\frac {\pi }{6}} \sqrt {b} e^{-\frac {6 a}{b}} \text {erfi}\left (\frac {\sqrt {6} \sqrt {a+b \text {arccosh}(c x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {a+b \text {arccosh}(c x)}\right )}{b^2 c^4}+\frac {2 d x^3 (c x-1)^{3/2} (c x+1)^{3/2}}{b c \sqrt {a+b \text {arccosh}(c x)}}\)

Input:

Int[(x^3*(d - c^2*d*x^2))/(a + b*ArcCosh[c*x])^(3/2),x]
 

Output:

(2*d*x^3*(-1 + c*x)^(3/2)*(1 + c*x)^(3/2))/(b*c*Sqrt[a + b*ArcCosh[c*x]]) 
+ (6*d*(-1/4*Sqrt[a + b*ArcCosh[c*x]] + (Sqrt[b]*E^((4*a)/b)*Sqrt[Pi]*Erf[ 
(2*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/32 + (Sqrt[b]*Sqrt[Pi]*Erfi[(2*Sqrt 
[a + b*ArcCosh[c*x]])/Sqrt[b]])/(32*E^((4*a)/b))))/(b^2*c^4) - (12*d*(-1/8 
*Sqrt[a + b*ArcCosh[c*x]] + (Sqrt[b]*E^((4*a)/b)*Sqrt[Pi]*Erf[(2*Sqrt[a + 
b*ArcCosh[c*x]])/Sqrt[b]])/64 - (Sqrt[b]*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[ 
2]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/64 + (Sqrt[b]*E^((6*a)/b)*Sqrt[Pi/6 
]*Erf[(Sqrt[6]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/64 + (Sqrt[b]*Sqrt[Pi]* 
Erfi[(2*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(64*E^((4*a)/b)) - (Sqrt[b]*Sq 
rt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(64*E^((2*a)/b) 
) + (Sqrt[b]*Sqrt[Pi/6]*Erfi[(Sqrt[6]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/ 
(64*E^((6*a)/b))))/(b^2*c^4)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6357
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^m*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c* 
x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (Simp[ 
f*(m/(b*c*(n + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)]   Int[(f 
*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^( 
n + 1), x], x] - Simp[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(( 
1 + c*x)^p*(-1 + c*x)^p)]   Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x 
)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, 
f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 
2*p + 1, 0] && IGtQ[m, -3]
 

rule 6368
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x 
_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))* 
Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p]   Subst[In 
t[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c 
*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[ 
e2, (-c)*d2] && IGtQ[p + 3/2, 0] && IGtQ[m, 0]
 
Maple [F]

\[\int \frac {x^{3} \left (-c^{2} d \,x^{2}+d \right )}{\left (a +b \,\operatorname {arccosh}\left (c x \right )\right )^{\frac {3}{2}}}d x\]

Input:

int(x^3*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x)
 

Output:

int(x^3*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x)
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^3*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x, algorithm="fricas 
")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 

Sympy [F]

\[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=- d \left (\int \left (- \frac {x^{3}}{a \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} \operatorname {acosh}{\left (c x \right )}}\right )\, dx + \int \frac {c^{2} x^{5}}{a \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} + b \sqrt {a + b \operatorname {acosh}{\left (c x \right )}} \operatorname {acosh}{\left (c x \right )}}\, dx\right ) \] Input:

integrate(x**3*(-c**2*d*x**2+d)/(a+b*acosh(c*x))**(3/2),x)
 

Output:

-d*(Integral(-x**3/(a*sqrt(a + b*acosh(c*x)) + b*sqrt(a + b*acosh(c*x))*ac 
osh(c*x)), x) + Integral(c**2*x**5/(a*sqrt(a + b*acosh(c*x)) + b*sqrt(a + 
b*acosh(c*x))*acosh(c*x)), x))
 

Maxima [F]

\[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=\int { -\frac {{\left (c^{2} d x^{2} - d\right )} x^{3}}{{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^3*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x, algorithm="maxima 
")
 

Output:

-integrate((c^2*d*x^2 - d)*x^3/(b*arccosh(c*x) + a)^(3/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(x^3*(-c^2*d*x^2+d)/(a+b*arccosh(c*x))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=\int \frac {x^3\,\left (d-c^2\,d\,x^2\right )}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^{3/2}} \,d x \] Input:

int((x^3*(d - c^2*d*x^2))/(a + b*acosh(c*x))^(3/2),x)
 

Output:

int((x^3*(d - c^2*d*x^2))/(a + b*acosh(c*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^3 \left (d-c^2 d x^2\right )}{(a+b \text {arccosh}(c x))^{3/2}} \, dx=d \left (-\left (\int \frac {\sqrt {\mathit {acosh} \left (c x \right ) b +a}\, x^{5}}{\mathit {acosh} \left (c x \right )^{2} b^{2}+2 \mathit {acosh} \left (c x \right ) a b +a^{2}}d x \right ) c^{2}+\int \frac {\sqrt {\mathit {acosh} \left (c x \right ) b +a}\, x^{3}}{\mathit {acosh} \left (c x \right )^{2} b^{2}+2 \mathit {acosh} \left (c x \right ) a b +a^{2}}d x \right ) \] Input:

int(x^3*(-c^2*d*x^2+d)/(a+b*acosh(c*x))^(3/2),x)
 

Output:

d*( - int((sqrt(acosh(c*x)*b + a)*x**5)/(acosh(c*x)**2*b**2 + 2*acosh(c*x) 
*a*b + a**2),x)*c**2 + int((sqrt(acosh(c*x)*b + a)*x**3)/(acosh(c*x)**2*b* 
*2 + 2*acosh(c*x)*a*b + a**2),x))