\(\int \frac {a+b \text {arccosh}(c x)}{x^2 (d+e x^2)} \, dx\) [393]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 543 \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=-\frac {a+b \text {arccosh}(c x)}{d x}+\frac {b c \arctan \left (\sqrt {-1+c x} \sqrt {1+c x}\right )}{d}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 (-d)^{3/2}} \] Output:

-(a+b*arccosh(c*x))/d/x+b*c*arctan((c*x-1)^(1/2)*(c*x+1)^(1/2))/d+1/2*e^(1 
/2)*(a+b*arccosh(c*x))*ln(1-e^(1/2)*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*( 
-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(3/2)-1/2*e^(1/2)*(a+b*arccosh(c*x))*ln( 
1+e^(1/2)*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2) 
))/(-d)^(3/2)+1/2*e^(1/2)*(a+b*arccosh(c*x))*ln(1-e^(1/2)*(c*x+(c*x-1)^(1/ 
2)*(c*x+1)^(1/2))/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(3/2)-1/2*e^(1/2)* 
(a+b*arccosh(c*x))*ln(1+e^(1/2)*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*(-d)^ 
(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(3/2)-1/2*b*e^(1/2)*polylog(2,-e^(1/2)*(c*x+ 
(c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(3/2)+1 
/2*b*e^(1/2)*polylog(2,e^(1/2)*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*(-d)^( 
1/2)-(-c^2*d-e)^(1/2)))/(-d)^(3/2)-1/2*b*e^(1/2)*polylog(2,-e^(1/2)*(c*x+( 
c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(3/2)+1/ 
2*b*e^(1/2)*polylog(2,e^(1/2)*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(c*(-d)^(1 
/2)+(-c^2*d-e)^(1/2)))/(-d)^(3/2)
 

Mathematica [A] (verified)

Time = 0.94 (sec) , antiderivative size = 549, normalized size of antiderivative = 1.01 \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\frac {1}{2} \left (-\frac {2 (a+b \text {arccosh}(c x))}{d x}+\frac {2 b c \sqrt {-1+c^2 x^2} \arctan \left (\sqrt {-1+c^2 x^2}\right )}{d \sqrt {-1+c x} \sqrt {1+c x}}+\frac {d \sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}+\frac {d \sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}+\frac {b d \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {b d \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{5/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{(-d)^{3/2}}\right ) \] Input:

Integrate[(a + b*ArcCosh[c*x])/(x^2*(d + e*x^2)),x]
 

Output:

((-2*(a + b*ArcCosh[c*x]))/(d*x) + (2*b*c*Sqrt[-1 + c^2*x^2]*ArcTan[Sqrt[- 
1 + c^2*x^2]])/(d*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (d*Sqrt[e]*(a + b*ArcCos 
h[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]) 
])/(-d)^(5/2) + (Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c 
*x])/(-(c*Sqrt[-d]) + Sqrt[-(c^2*d) - e])])/(-d)^(3/2) + (Sqrt[e]*(a + b*A 
rcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) 
- e])])/(-d)^(3/2) + (d*Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^Ar 
cCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (b*Sqrt[e]*Po 
lyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(-d) 
^(3/2) + (b*d*Sqrt[e]*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(-(c*Sqrt[-d]) + 
 Sqrt[-(c^2*d) - e])])/(-d)^(5/2) + (b*d*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^A 
rcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))])/(-d)^(5/2) + (b*Sqrt[e]* 
PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(- 
d)^(3/2))/2
 

Rubi [A] (verified)

Time = 1.37 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx\)

\(\Big \downarrow \) 6374

\(\displaystyle \int \left (\frac {a+b \text {arccosh}(c x)}{d x^2}-\frac {e (a+b \text {arccosh}(c x))}{d \left (d+e x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}+1\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {arccosh}(c x)) \log \left (\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}+1\right )}{2 (-d)^{3/2}}-\frac {a+b \text {arccosh}(c x)}{d x}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 (-d)^{3/2}}+\frac {b c \arctan \left (\sqrt {c x-1} \sqrt {c x+1}\right )}{d}\)

Input:

Int[(a + b*ArcCosh[c*x])/(x^2*(d + e*x^2)),x]
 

Output:

-((a + b*ArcCosh[c*x])/(d*x)) + (b*c*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]]) 
/d + (Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqr 
t[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcCosh[c*x 
])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2 
*(-d)^(3/2)) + (Sqrt[e]*(a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c* 
x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*A 
rcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) 
- e])])/(2*(-d)^(3/2)) - (b*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/ 
(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]))])/(2*(-d)^(3/2)) + (b*Sqrt[e]*PolyLog[2 
, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/ 
2)) - (b*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[ 
-(c^2*d) - e]))])/(2*(-d)^(3/2)) + (b*Sqrt[e]*PolyLog[2, (Sqrt[e]*E^ArcCos 
h[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*(-d)^(3/2))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 10.63 (sec) , antiderivative size = 331, normalized size of antiderivative = 0.61

method result size
parts \(-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{d \sqrt {d e}}-\frac {a}{d x}+b c \left (-\frac {\operatorname {arccosh}\left (c x \right )}{d c x}+\frac {2 \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}-\frac {e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 d^{2} c^{2}}+\frac {e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 d^{2} c^{2}}\right )\) \(331\)
derivativedivides \(c \left (-\frac {a}{d c x}-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {b \,\operatorname {arccosh}\left (c x \right )}{c x d}+\frac {2 b \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}-\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}\right )\) \(339\)
default \(c \left (-\frac {a}{d c x}-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {b \,\operatorname {arccosh}\left (c x \right )}{c x d}+\frac {2 b \arctan \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{d}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}-\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e +e \right ) \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}\right )\) \(339\)

Input:

int((a+b*arccosh(c*x))/x^2/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

-a*e/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))-a/d/x+b*c*(-arccosh(c*x)/d/c/x+ 
2/d*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))-1/8/d^2*e/c^2*sum((4*_R1^2*c^2 
*d+_R1^2*e+e)/_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1 
/2)*(c*x+1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)), 
_R1=RootOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e))+1/8/d^2*e/c^2*sum((_R1^2*e+4*c^2* 
d+e)/_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c*x+ 
1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=RootO 
f(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e)))
 

Fricas [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{2}} \,d x } \] Input:

integrate((a+b*arccosh(c*x))/x^2/(e*x^2+d),x, algorithm="fricas")
 

Output:

integral((b*arccosh(c*x) + a)/(e*x^4 + d*x^2), x)
 

Sympy [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int \frac {a + b \operatorname {acosh}{\left (c x \right )}}{x^{2} \left (d + e x^{2}\right )}\, dx \] Input:

integrate((a+b*acosh(c*x))/x**2/(e*x**2+d),x)
 

Output:

Integral((a + b*acosh(c*x))/(x**2*(d + e*x**2)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arccosh(c*x))/x^2/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{2}} \,d x } \] Input:

integrate((a+b*arccosh(c*x))/x^2/(e*x^2+d),x, algorithm="giac")
 

Output:

integrate((b*arccosh(c*x) + a)/((e*x^2 + d)*x^2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{x^2\,\left (e\,x^2+d\right )} \,d x \] Input:

int((a + b*acosh(c*x))/(x^2*(d + e*x^2)),x)
 

Output:

int((a + b*acosh(c*x))/(x^2*(d + e*x^2)), x)
 

Reduce [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^2 \left (d+e x^2\right )} \, dx=\frac {-\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a x +\left (\int \frac {\mathit {acosh} \left (c x \right )}{e \,x^{4}+d \,x^{2}}d x \right ) b \,d^{2} x -a d}{d^{2} x} \] Input:

int((a+b*acosh(c*x))/x^2/(e*x^2+d),x)
 

Output:

( - sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*x + int(acosh(c*x)/(d* 
x**2 + e*x**4),x)*b*d**2*x - a*d)/(d**2*x)