\(\int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx\) [7]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 195 \[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=-\frac {c \sqrt {-1+c x} \sqrt {1+c x}}{6 \left (c^2 d^2-e^2\right ) (d+e x)^2}-\frac {c^3 d \sqrt {-1+c x} \sqrt {1+c x}}{2 (c d-e)^2 (c d+e)^2 (d+e x)}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}+\frac {c^3 \left (2 c^2 d^2+e^2\right ) \text {arctanh}\left (\frac {\sqrt {c d+e} \sqrt {1+c x}}{\sqrt {c d-e} \sqrt {-1+c x}}\right )}{3 (c d-e)^{5/2} e (c d+e)^{5/2}} \] Output:

-1/6*c*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(c^2*d^2-e^2)/(e*x+d)^2-1/2*c^3*d*(c*x- 
1)^(1/2)*(c*x+1)^(1/2)/(c*d-e)^2/(c*d+e)^2/(e*x+d)-1/3*arccosh(c*x)/e/(e*x 
+d)^3+1/3*c^3*(2*c^2*d^2+e^2)*arctanh((c*d+e)^(1/2)*(c*x+1)^(1/2)/(c*d-e)^ 
(1/2)/(c*x-1)^(1/2))/(c*d-e)^(5/2)/e/(c*d+e)^(5/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.37 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.25 \[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\frac {1}{6} \left (\frac {c \sqrt {-1+c x} \sqrt {1+c x} \left (e^2-c^2 d (4 d+3 e x)\right )}{\left (-c^2 d^2+e^2\right )^2 (d+e x)^2}-\frac {2 \text {arccosh}(c x)}{e (d+e x)^3}-\frac {i c^3 \left (2 c^2 d^2+e^2\right ) \log \left (\frac {12 e^2 (-c d+e)^2 (c d+e)^2 \left (-i e-i c^2 d x+\sqrt {-c^2 d^2+e^2} \sqrt {-1+c x} \sqrt {1+c x}\right )}{c^3 \sqrt {-c^2 d^2+e^2} \left (2 c^2 d^2+e^2\right ) (d+e x)}\right )}{e (-c d+e)^2 (c d+e)^2 \sqrt {-c^2 d^2+e^2}}\right ) \] Input:

Integrate[ArcCosh[c*x]/(d + e*x)^4,x]
 

Output:

((c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(e^2 - c^2*d*(4*d + 3*e*x)))/((-(c^2*d^2) 
 + e^2)^2*(d + e*x)^2) - (2*ArcCosh[c*x])/(e*(d + e*x)^3) - (I*c^3*(2*c^2* 
d^2 + e^2)*Log[(12*e^2*(-(c*d) + e)^2*(c*d + e)^2*((-I)*e - I*c^2*d*x + Sq 
rt[-(c^2*d^2) + e^2]*Sqrt[-1 + c*x]*Sqrt[1 + c*x]))/(c^3*Sqrt[-(c^2*d^2) + 
 e^2]*(2*c^2*d^2 + e^2)*(d + e*x))])/(e*(-(c*d) + e)^2*(c*d + e)^2*Sqrt[-( 
c^2*d^2) + e^2]))/6
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.17, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {6378, 114, 25, 27, 168, 25, 27, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx\)

\(\Big \downarrow \) 6378

\(\displaystyle \frac {c \int \frac {1}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)^3}dx}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {c \left (-\frac {\int -\frac {c^2 (2 d-e x)}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)^2}dx}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {c \left (\frac {\int \frac {c^2 (2 d-e x)}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)^2}dx}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \left (\frac {c^2 \int \frac {2 d-e x}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)^2}dx}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {c \left (\frac {c^2 \left (-\frac {\int -\frac {2 c^2 d^2+e^2}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)}dx}{c^2 d^2-e^2}-\frac {3 d e \sqrt {c x-1} \sqrt {c x+1}}{\left (c^2 d^2-e^2\right ) (d+e x)}\right )}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {c \left (\frac {c^2 \left (\frac {\int \frac {2 c^2 d^2+e^2}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)}dx}{c^2 d^2-e^2}-\frac {3 d e \sqrt {c x-1} \sqrt {c x+1}}{\left (c^2 d^2-e^2\right ) (d+e x)}\right )}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \left (\frac {c^2 \left (\frac {\left (2 c^2 d^2+e^2\right ) \int \frac {1}{\sqrt {c x-1} \sqrt {c x+1} (d+e x)}dx}{c^2 d^2-e^2}-\frac {3 d e \sqrt {c x-1} \sqrt {c x+1}}{\left (c^2 d^2-e^2\right ) (d+e x)}\right )}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {c \left (\frac {c^2 \left (\frac {2 \left (2 c^2 d^2+e^2\right ) \int \frac {1}{c d-e-\frac {(c d+e) (c x+1)}{c x-1}}d\frac {\sqrt {c x+1}}{\sqrt {c x-1}}}{c^2 d^2-e^2}-\frac {3 d e \sqrt {c x-1} \sqrt {c x+1}}{\left (c^2 d^2-e^2\right ) (d+e x)}\right )}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {c \left (\frac {c^2 \left (\frac {2 \left (2 c^2 d^2+e^2\right ) \text {arctanh}\left (\frac {\sqrt {c x+1} \sqrt {c d+e}}{\sqrt {c x-1} \sqrt {c d-e}}\right )}{\sqrt {c d-e} \sqrt {c d+e} \left (c^2 d^2-e^2\right )}-\frac {3 d e \sqrt {c x-1} \sqrt {c x+1}}{\left (c^2 d^2-e^2\right ) (d+e x)}\right )}{2 \left (c^2 d^2-e^2\right )}-\frac {e \sqrt {c x-1} \sqrt {c x+1}}{2 \left (c^2 d^2-e^2\right ) (d+e x)^2}\right )}{3 e}-\frac {\text {arccosh}(c x)}{3 e (d+e x)^3}\)

Input:

Int[ArcCosh[c*x]/(d + e*x)^4,x]
 

Output:

-1/3*ArcCosh[c*x]/(e*(d + e*x)^3) + (c*(-1/2*(e*Sqrt[-1 + c*x]*Sqrt[1 + c* 
x])/((c^2*d^2 - e^2)*(d + e*x)^2) + (c^2*((-3*d*e*Sqrt[-1 + c*x]*Sqrt[1 + 
c*x])/((c^2*d^2 - e^2)*(d + e*x)) + (2*(2*c^2*d^2 + e^2)*ArcTanh[(Sqrt[c*d 
 + e]*Sqrt[1 + c*x])/(Sqrt[c*d - e]*Sqrt[-1 + c*x])])/(Sqrt[c*d - e]*Sqrt[ 
c*d + e]*(c^2*d^2 - e^2))))/(2*(c^2*d^2 - e^2))))/(3*e)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 6378
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x 
_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x])^n/(e*(m + 1))), x] 
 - Simp[b*c*(n/(e*(m + 1)))   Int[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x])^( 
n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x] /; FreeQ[{a, b, c, d, e, m}, 
 x] && IGtQ[n, 0] && NeQ[m, -1]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.17 (sec) , antiderivative size = 595, normalized size of antiderivative = 3.05

method result size
parts \(-\frac {\operatorname {arccosh}\left (c x \right )}{3 e \left (e x +d \right )^{3}}-\frac {c \left (2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e x +d}\right ) c^{4} d^{2} e^{2} x^{2}+4 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e x +d}\right ) c^{4} d^{3} e x +2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e x +d}\right ) c^{4} d^{4}+\ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e x +d}\right ) c^{2} e^{4} x^{2}+3 c^{2} d \,e^{3} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, x +2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e x +d}\right ) c^{2} d \,e^{3} x +4 c^{2} d^{2} e^{2} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}+\ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e x +d}\right ) c^{2} d^{2} e^{2}-e^{4} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\right ) \operatorname {csgn}\left (c \right )^{2} \sqrt {c x +1}\, \sqrt {c x -1}}{6 e^{2} \sqrt {c^{2} x^{2}-1}\, \left (c d +e \right ) \left (c d -e \right ) \left (c^{2} d^{2}-e^{2}\right ) \left (e x +d \right )^{2} \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}}\) \(595\)
derivativedivides \(\frac {-\frac {c^{4} \operatorname {arccosh}\left (c x \right )}{3 \left (e c x +c d \right )^{3} e}-\frac {c^{4} \left (2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{4} d^{4}+4 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{4} d^{3} e x +2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{4} d^{2} e^{2} x^{2}+4 c^{2} d^{2} e^{2} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}+3 c^{2} d \,e^{3} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, x +\ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{2} d^{2} e^{2}+2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{2} d \,e^{3} x +\ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) e^{4} c^{2} x^{2}-e^{4} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\right ) \sqrt {c x -1}\, \sqrt {c x +1}}{6 e^{2} \sqrt {c^{2} x^{2}-1}\, \left (c d +e \right ) \left (c d -e \right ) \left (c^{2} d^{2}-e^{2}\right ) \left (e c x +c d \right )^{2} \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}}}{c}\) \(624\)
default \(\frac {-\frac {c^{4} \operatorname {arccosh}\left (c x \right )}{3 \left (e c x +c d \right )^{3} e}-\frac {c^{4} \left (2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{4} d^{4}+4 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{4} d^{3} e x +2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{4} d^{2} e^{2} x^{2}+4 c^{2} d^{2} e^{2} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}+3 c^{2} d \,e^{3} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, x +\ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{2} d^{2} e^{2}+2 \ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) c^{2} d \,e^{3} x +\ln \left (-\frac {2 \left (c^{2} d x -\sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\, e +e \right )}{e c x +c d}\right ) e^{4} c^{2} x^{2}-e^{4} \sqrt {c^{2} x^{2}-1}\, \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}\right ) \sqrt {c x -1}\, \sqrt {c x +1}}{6 e^{2} \sqrt {c^{2} x^{2}-1}\, \left (c d +e \right ) \left (c d -e \right ) \left (c^{2} d^{2}-e^{2}\right ) \left (e c x +c d \right )^{2} \sqrt {\frac {c^{2} d^{2}-e^{2}}{e^{2}}}}}{c}\) \(624\)

Input:

int(arccosh(c*x)/(e*x+d)^4,x,method=_RETURNVERBOSE)
 

Output:

-1/3*arccosh(c*x)/e/(e*x+d)^3-1/6/e^2*c*(2*ln(-2*(c^2*d*x-(c^2*x^2-1)^(1/2 
)*((c^2*d^2-e^2)/e^2)^(1/2)*e+e)/(e*x+d))*c^4*d^2*e^2*x^2+4*ln(-2*(c^2*d*x 
-(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)*e+e)/(e*x+d))*c^4*d^3*e*x+2*l 
n(-2*(c^2*d*x-(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)*e+e)/(e*x+d))*c^ 
4*d^4+ln(-2*(c^2*d*x-(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)*e+e)/(e*x 
+d))*c^2*e^4*x^2+3*c^2*d*e^3*(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)*x 
+2*ln(-2*(c^2*d*x-(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)*e+e)/(e*x+d) 
)*c^2*d*e^3*x+4*c^2*d^2*e^2*(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)+ln 
(-2*(c^2*d*x-(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2)*e+e)/(e*x+d))*c^2 
*d^2*e^2-e^4*(c^2*x^2-1)^(1/2)*((c^2*d^2-e^2)/e^2)^(1/2))*csgn(c)^2*(c*x+1 
)^(1/2)*(c*x-1)^(1/2)/(c^2*x^2-1)^(1/2)/(c*d+e)/(c*d-e)/(c^2*d^2-e^2)/(e*x 
+d)^2/((c^2*d^2-e^2)/e^2)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 889 vs. \(2 (167) = 334\).

Time = 0.48 (sec) , antiderivative size = 1799, normalized size of antiderivative = 9.23 \[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\text {Too large to display} \] Input:

integrate(arccosh(c*x)/(e*x+d)^4,x, algorithm="fricas")
 

Output:

[-1/6*(3*c^6*d^9 - 3*c^4*d^7*e^2 + 3*(c^6*d^6*e^3 - c^4*d^4*e^5)*x^3 + 9*( 
c^6*d^7*e^2 - c^4*d^5*e^4)*x^2 - (2*c^5*d^8 + c^3*d^6*e^2 + (2*c^5*d^5*e^3 
 + c^3*d^3*e^5)*x^3 + 3*(2*c^5*d^6*e^2 + c^3*d^4*e^4)*x^2 + 3*(2*c^5*d^7*e 
 + c^3*d^5*e^3)*x)*sqrt(c^2*d^2 - e^2)*log((c^3*d^2*x + c*d*e + sqrt(c^2*d 
^2 - e^2)*(c^2*d*x + e) + (c^2*d^2 + sqrt(c^2*d^2 - e^2)*c*d - e^2)*sqrt(c 
^2*x^2 - 1))/(e*x + d)) + 9*(c^6*d^8*e - c^4*d^6*e^3)*x - 2*((c^6*d^6*e^3 
- 3*c^4*d^4*e^5 + 3*c^2*d^2*e^7 - e^9)*x^3 + 3*(c^6*d^7*e^2 - 3*c^4*d^5*e^ 
4 + 3*c^2*d^3*e^6 - d*e^8)*x^2 + 3*(c^6*d^8*e - 3*c^4*d^6*e^3 + 3*c^2*d^4* 
e^5 - d^2*e^7)*x)*log(c*x + sqrt(c^2*x^2 - 1)) - 2*(c^6*d^9 - 3*c^4*d^7*e^ 
2 + 3*c^2*d^5*e^4 - d^3*e^6 + (c^6*d^6*e^3 - 3*c^4*d^4*e^5 + 3*c^2*d^2*e^7 
 - e^9)*x^3 + 3*(c^6*d^7*e^2 - 3*c^4*d^5*e^4 + 3*c^2*d^3*e^6 - d*e^8)*x^2 
+ 3*(c^6*d^8*e - 3*c^4*d^6*e^3 + 3*c^2*d^4*e^5 - d^2*e^7)*x)*log(-c*x + sq 
rt(c^2*x^2 - 1)) + (4*c^5*d^8*e - 5*c^3*d^6*e^3 + c*d^4*e^5 + 3*(c^5*d^6*e 
^3 - c^3*d^4*e^5)*x^2 + (7*c^5*d^7*e^2 - 8*c^3*d^5*e^4 + c*d^3*e^6)*x)*sqr 
t(c^2*x^2 - 1))/(c^6*d^12*e - 3*c^4*d^10*e^3 + 3*c^2*d^8*e^5 - d^6*e^7 + ( 
c^6*d^9*e^4 - 3*c^4*d^7*e^6 + 3*c^2*d^5*e^8 - d^3*e^10)*x^3 + 3*(c^6*d^10* 
e^3 - 3*c^4*d^8*e^5 + 3*c^2*d^6*e^7 - d^4*e^9)*x^2 + 3*(c^6*d^11*e^2 - 3*c 
^4*d^9*e^4 + 3*c^2*d^7*e^6 - d^5*e^8)*x), -1/6*(3*c^6*d^9 - 3*c^4*d^7*e^2 
+ 3*(c^6*d^6*e^3 - c^4*d^4*e^5)*x^3 + 9*(c^6*d^7*e^2 - c^4*d^5*e^4)*x^2 + 
2*(2*c^5*d^8 + c^3*d^6*e^2 + (2*c^5*d^5*e^3 + c^3*d^3*e^5)*x^3 + 3*(2*c...
 

Sympy [F]

\[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\int \frac {\operatorname {acosh}{\left (c x \right )}}{\left (d + e x\right )^{4}}\, dx \] Input:

integrate(acosh(c*x)/(e*x+d)**4,x)
 

Output:

Integral(acosh(c*x)/(d + e*x)**4, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(arccosh(c*x)/(e*x+d)^4,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume((e-c*d)*(e+c*d)>0)', see `assume 
?` for mor
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(arccosh(c*x)/(e*x+d)^4,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Limit: Max order reached or unable 
to make series expansion Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\int \frac {\mathrm {acosh}\left (c\,x\right )}{{\left (d+e\,x\right )}^4} \,d x \] Input:

int(acosh(c*x)/(d + e*x)^4,x)
                                                                                    
                                                                                    
 

Output:

int(acosh(c*x)/(d + e*x)^4, x)
 

Reduce [F]

\[ \int \frac {\text {arccosh}(c x)}{(d+e x)^4} \, dx=\int \frac {\mathit {acosh} \left (c x \right )}{e^{4} x^{4}+4 d \,e^{3} x^{3}+6 d^{2} e^{2} x^{2}+4 d^{3} e x +d^{4}}d x \] Input:

int(acosh(c*x)/(e*x+d)^4,x)
 

Output:

int(acosh(c*x)/(d**4 + 4*d**3*e*x + 6*d**2*e**2*x**2 + 4*d*e**3*x**3 + e** 
4*x**4),x)