\(\int (d+e x) \text {arccosh}(c x)^2 \, dx\) [10]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 122 \[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=2 d x+\frac {e x^2}{4}-\frac {2 d \sqrt {-1+c x} \sqrt {1+c x} \text {arccosh}(c x)}{c}-\frac {e x \sqrt {-1+c x} \sqrt {1+c x} \text {arccosh}(c x)}{2 c}-\frac {d^2 \text {arccosh}(c x)^2}{2 e}-\frac {e \text {arccosh}(c x)^2}{4 c^2}+\frac {(d+e x)^2 \text {arccosh}(c x)^2}{2 e} \] Output:

2*d*x+1/4*e*x^2-2*d*(c*x-1)^(1/2)*(c*x+1)^(1/2)*arccosh(c*x)/c-1/2*e*x*(c* 
x-1)^(1/2)*(c*x+1)^(1/2)*arccosh(c*x)/c-1/2*d^2*arccosh(c*x)^2/e-1/4*e*arc 
cosh(c*x)^2/c^2+1/2*(e*x+d)^2*arccosh(c*x)^2/e
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.86 \[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=2 d x+\frac {e x^2}{4}-\frac {2 d \sqrt {-1+c x} \sqrt {1+c x} \text {arccosh}(c x)}{c}-\frac {e x \sqrt {-1+c x} \sqrt {1+c x} \text {arccosh}(c x)}{2 c}+d x \text {arccosh}(c x)^2+\frac {e \left (-1+2 c^2 x^2\right ) \text {arccosh}(c x)^2}{4 c^2} \] Input:

Integrate[(d + e*x)*ArcCosh[c*x]^2,x]
 

Output:

2*d*x + (e*x^2)/4 - (2*d*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcCosh[c*x])/c - (e 
*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcCosh[c*x])/(2*c) + d*x*ArcCosh[c*x]^2 + 
 (e*(-1 + 2*c^2*x^2)*ArcCosh[c*x]^2)/(4*c^2)
 

Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.17, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6378, 6390, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \text {arccosh}(c x)^2 (d+e x) \, dx\)

\(\Big \downarrow \) 6378

\(\displaystyle \frac {\text {arccosh}(c x)^2 (d+e x)^2}{2 e}-\frac {c \int \frac {(d+e x)^2 \text {arccosh}(c x)}{\sqrt {c x-1} \sqrt {c x+1}}dx}{e}\)

\(\Big \downarrow \) 6390

\(\displaystyle \frac {\text {arccosh}(c x)^2 (d+e x)^2}{2 e}-\frac {c \int \left (\frac {\text {arccosh}(c x) d^2}{\sqrt {c x-1} \sqrt {c x+1}}+\frac {2 e x \text {arccosh}(c x) d}{\sqrt {c x-1} \sqrt {c x+1}}+\frac {e^2 x^2 \text {arccosh}(c x)}{\sqrt {c x-1} \sqrt {c x+1}}\right )dx}{e}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\text {arccosh}(c x)^2 (d+e x)^2}{2 e}-\frac {c \left (\frac {e^2 \text {arccosh}(c x)^2}{4 c^3}+\frac {2 d e \sqrt {c x-1} \sqrt {c x+1} \text {arccosh}(c x)}{c^2}+\frac {e^2 x \sqrt {c x-1} \sqrt {c x+1} \text {arccosh}(c x)}{2 c^2}+\frac {d^2 \text {arccosh}(c x)^2}{2 c}-\frac {2 d e x}{c}-\frac {e^2 x^2}{4 c}\right )}{e}\)

Input:

Int[(d + e*x)*ArcCosh[c*x]^2,x]
 

Output:

((d + e*x)^2*ArcCosh[c*x]^2)/(2*e) - (c*((-2*d*e*x)/c - (e^2*x^2)/(4*c) + 
(2*d*e*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcCosh[c*x])/c^2 + (e^2*x*Sqrt[-1 + c 
*x]*Sqrt[1 + c*x]*ArcCosh[c*x])/(2*c^2) + (d^2*ArcCosh[c*x]^2)/(2*c) + (e^ 
2*ArcCosh[c*x]^2)/(4*c^3)))/e
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6378
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x 
_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x])^n/(e*(m + 1))), x] 
 - Simp[b*c*(n/(e*(m + 1)))   Int[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x])^( 
n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x] /; FreeQ[{a, b, c, d, e, m}, 
 x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 6390
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*(( 
d2_) + (e2_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(m_.), x_Symbol] :> Int[Expand 
Integrand[(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, (f + g*x)^m, 
x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && 
 EqQ[e2 + c*d2, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d1, 0] && LtQ[ 
d2, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p, -1]) || GtQ[p, 0] || EqQ[m, 1 
] || (EqQ[m, 2] && LtQ[p, -2]))
 
Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.82

method result size
derivativedivides \(\frac {\frac {e \left (2 \operatorname {arccosh}\left (c x \right )^{2} x^{2} c^{2}-2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x +1}\, \sqrt {c x -1}\, c x -\operatorname {arccosh}\left (c x \right )^{2}+c^{2} x^{2}\right )}{4 c}+d \left (\operatorname {arccosh}\left (c x \right )^{2} c x -2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}+2 c x \right )}{c}\) \(100\)
default \(\frac {\frac {e \left (2 \operatorname {arccosh}\left (c x \right )^{2} x^{2} c^{2}-2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x +1}\, \sqrt {c x -1}\, c x -\operatorname {arccosh}\left (c x \right )^{2}+c^{2} x^{2}\right )}{4 c}+d \left (\operatorname {arccosh}\left (c x \right )^{2} c x -2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}+2 c x \right )}{c}\) \(100\)
orering \(\frac {\left (7 c^{2} e^{3} x^{4}+33 c^{2} d \,e^{2} x^{3}+20 c^{2} d^{2} e \,x^{2}+8 c^{2} d^{3} x -6 x^{2} e^{3}-30 d \,e^{2} x -10 d^{2} e \right ) \operatorname {arccosh}\left (c x \right )^{2}}{8 c^{2} \left (e x +d \right )^{2}}-\frac {\left (3 c^{2} e^{2} x^{4}+17 c^{2} d e \,x^{3}-4 e^{2} x^{2}-26 d e x -8 d^{2}\right ) \left (e \operatorname {arccosh}\left (c x \right )^{2}+\frac {2 \left (e x +d \right ) \operatorname {arccosh}\left (c x \right ) c}{\sqrt {c x -1}\, \sqrt {c x +1}}\right )}{8 \left (e x +d \right )^{2} c^{2}}+\frac {x \left (e x +8 d \right ) \left (c x -1\right ) \left (c x +1\right ) \left (\frac {4 e \,\operatorname {arccosh}\left (c x \right ) c}{\sqrt {c x -1}\, \sqrt {c x +1}}+\frac {2 c^{2} \left (e x +d \right )}{\left (c x -1\right ) \left (c x +1\right )}-\frac {\left (e x +d \right ) \operatorname {arccosh}\left (c x \right ) c^{2}}{\left (c x -1\right )^{\frac {3}{2}} \sqrt {c x +1}}-\frac {\left (e x +d \right ) \operatorname {arccosh}\left (c x \right ) c^{2}}{\sqrt {c x -1}\, \left (c x +1\right )^{\frac {3}{2}}}\right )}{8 c^{2} \left (e x +d \right )}\) \(306\)

Input:

int((e*x+d)*arccosh(c*x)^2,x,method=_RETURNVERBOSE)
 

Output:

1/c*(1/4*e*(2*arccosh(c*x)^2*x^2*c^2-2*arccosh(c*x)*(c*x+1)^(1/2)*(c*x-1)^ 
(1/2)*c*x-arccosh(c*x)^2+c^2*x^2)/c+d*(arccosh(c*x)^2*c*x-2*arccosh(c*x)*( 
c*x-1)^(1/2)*(c*x+1)^(1/2)+2*c*x))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.80 \[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=\frac {c^{2} e x^{2} + 8 \, c^{2} d x + {\left (2 \, c^{2} e x^{2} + 4 \, c^{2} d x - e\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right )^{2} - 2 \, \sqrt {c^{2} x^{2} - 1} {\left (c e x + 4 \, c d\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right )}{4 \, c^{2}} \] Input:

integrate((e*x+d)*arccosh(c*x)^2,x, algorithm="fricas")
 

Output:

1/4*(c^2*e*x^2 + 8*c^2*d*x + (2*c^2*e*x^2 + 4*c^2*d*x - e)*log(c*x + sqrt( 
c^2*x^2 - 1))^2 - 2*sqrt(c^2*x^2 - 1)*(c*e*x + 4*c*d)*log(c*x + sqrt(c^2*x 
^2 - 1)))/c^2
 

Sympy [F]

\[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=\int \left (d + e x\right ) \operatorname {acosh}^{2}{\left (c x \right )}\, dx \] Input:

integrate((e*x+d)*acosh(c*x)**2,x)
 

Output:

Integral((d + e*x)*acosh(c*x)**2, x)
 

Maxima [F]

\[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=\int { {\left (e x + d\right )} \operatorname {arcosh}\left (c x\right )^{2} \,d x } \] Input:

integrate((e*x+d)*arccosh(c*x)^2,x, algorithm="maxima")
 

Output:

1/2*(e*x^2 + 2*d*x)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))^2 - integrate(( 
c^3*e*x^4 + 2*c^3*d*x^3 - c*e*x^2 - 2*c*d*x + (c^2*e*x^3 + 2*c^2*d*x^2)*sq 
rt(c*x + 1)*sqrt(c*x - 1))*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/(c^3*x^3 
 + (c^2*x^2 - 1)*sqrt(c*x + 1)*sqrt(c*x - 1) - c*x), x)
 

Giac [F(-2)]

Exception generated. \[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=\text {Exception raised: TypeError} \] Input:

integrate((e*x+d)*arccosh(c*x)^2,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=\int {\mathrm {acosh}\left (c\,x\right )}^2\,\left (d+e\,x\right ) \,d x \] Input:

int(acosh(c*x)^2*(d + e*x),x)
 

Output:

int(acosh(c*x)^2*(d + e*x), x)
 

Reduce [F]

\[ \int (d+e x) \text {arccosh}(c x)^2 \, dx=\left (\int \mathit {acosh} \left (c x \right )^{2}d x \right ) d +\left (\int \mathit {acosh} \left (c x \right )^{2} x d x \right ) e \] Input:

int((e*x+d)*acosh(c*x)^2,x)
                                                                                    
                                                                                    
 

Output:

int(acosh(c*x)**2,x)*d + int(acosh(c*x)**2*x,x)*e