\(\int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx\) [108]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 13, antiderivative size = 97 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=-\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}+\frac {1}{(b x-\text {arctanh}(\tanh (a+b x)))^2 \text {arctanh}(\tanh (a+b x))}-\frac {\log (x)}{(b x-\text {arctanh}(\tanh (a+b x)))^3}+\frac {\log (\text {arctanh}(\tanh (a+b x)))}{(b x-\text {arctanh}(\tanh (a+b x)))^3} \] Output:

-1/2/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b*x+a))^2+1/(b*x-arctanh(tanh 
(b*x+a)))^2/arctanh(tanh(b*x+a))-ln(x)/(b*x-arctanh(tanh(b*x+a)))^3+ln(arc 
tanh(tanh(b*x+a)))/(b*x-arctanh(tanh(b*x+a)))^3
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.76 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {b^2 x^2-4 b x \text {arctanh}(\tanh (a+b x))+\text {arctanh}(\tanh (a+b x))^2 (3+2 \log (b x)-2 \log (\text {arctanh}(\tanh (a+b x))))}{2 \text {arctanh}(\tanh (a+b x))^2 (-b x+\text {arctanh}(\tanh (a+b x)))^3} \] Input:

Integrate[1/(x*ArcTanh[Tanh[a + b*x]]^3),x]
 

Output:

(b^2*x^2 - 4*b*x*ArcTanh[Tanh[a + b*x]] + ArcTanh[Tanh[a + b*x]]^2*(3 + 2* 
Log[b*x] - 2*Log[ArcTanh[Tanh[a + b*x]]]))/(2*ArcTanh[Tanh[a + b*x]]^2*(-( 
b*x) + ArcTanh[Tanh[a + b*x]])^3)
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.38, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {2594, 2594, 2591, 14, 2588, 14}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {\int \frac {1}{x \text {arctanh}(\tanh (a+b x))^2}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {-\frac {\int \frac {1}{x \text {arctanh}(\tanh (a+b x))}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{(b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2591

\(\displaystyle -\frac {-\frac {\frac {b \int \frac {1}{\text {arctanh}(\tanh (a+b x))}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {\int \frac {1}{x}dx}{b x-\text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{(b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 14

\(\displaystyle -\frac {-\frac {\frac {b \int \frac {1}{\text {arctanh}(\tanh (a+b x))}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {\log (x)}{b x-\text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{(b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2588

\(\displaystyle -\frac {-\frac {\frac {\int \frac {1}{\text {arctanh}(\tanh (a+b x))}d\text {arctanh}(\tanh (a+b x))}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {\log (x)}{b x-\text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{(b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 14

\(\displaystyle -\frac {1}{2 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^2}-\frac {-\frac {1}{(b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))}-\frac {\frac {\log (\text {arctanh}(\tanh (a+b x)))}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {\log (x)}{b x-\text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}}{b x-\text {arctanh}(\tanh (a+b x))}\)

Input:

Int[1/(x*ArcTanh[Tanh[a + b*x]]^3),x]
 

Output:

-1/2*1/((b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^2) - (-(1/(( 
b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]])) - (-(Log[x]/(b*x - 
ArcTanh[Tanh[a + b*x]])) + Log[ArcTanh[Tanh[a + b*x]]]/(b*x - ArcTanh[Tanh 
[a + b*x]]))/(b*x - ArcTanh[Tanh[a + b*x]]))/(b*x - ArcTanh[Tanh[a + b*x]] 
)
 

Defintions of rubi rules used

rule 14
Int[(a_.)/(x_), x_Symbol] :> Simp[a*Log[x], x] /; FreeQ[a, x]
 

rule 2588
Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Simp[1/c   Subst 
[Int[x^m, x], x, u], x]] /; FreeQ[m, x] && PiecewiseLinearQ[u, x]
 

rule 2591
Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D 
[v, x]]}, Simp[b/(b*u - a*v)   Int[1/v, x], x] - Simp[a/(b*u - a*v)   Int[1 
/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]
 

rule 2594
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[ 
D[v, x]]}, Simp[v^(n + 1)/((n + 1)*(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 
 1)*(b*u - a*v)))   Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Piecew 
iseLinearQ[u, v, x] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.95

\[\frac {\ln \left (x \right )}{\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right )^{3}}-\frac {\ln \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )\right )}{\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right )^{3}}+\frac {1}{\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )}+\frac {1}{2 \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2}}\]

Input:

int(1/x/arctanh(tanh(b*x+a))^3,x)
 

Output:

1/(arctanh(tanh(b*x+a))-b*x)^3*ln(x)-1/(arctanh(tanh(b*x+a))-b*x)^3*ln(arc 
tanh(tanh(b*x+a)))+1/(arctanh(tanh(b*x+a))-b*x)^2/arctanh(tanh(b*x+a))+1/2 
/(arctanh(tanh(b*x+a))-b*x)/arctanh(tanh(b*x+a))^2
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.82 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {2 \, a b x + 3 \, a^{2} - 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \log \left (b x + a\right ) + 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \log \left (x\right )}{2 \, {\left (a^{3} b^{2} x^{2} + 2 \, a^{4} b x + a^{5}\right )}} \] Input:

integrate(1/x/arctanh(tanh(b*x+a))^3,x, algorithm="fricas")
 

Output:

1/2*(2*a*b*x + 3*a^2 - 2*(b^2*x^2 + 2*a*b*x + a^2)*log(b*x + a) + 2*(b^2*x 
^2 + 2*a*b*x + a^2)*log(x))/(a^3*b^2*x^2 + 2*a^4*b*x + a^5)
 

Sympy [F]

\[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=\int \frac {1}{x \operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \] Input:

integrate(1/x/atanh(tanh(b*x+a))**3,x)
 

Output:

Integral(1/(x*atanh(tanh(a + b*x))**3), x)
 

Maxima [A] (verification not implemented)

Time = 0.59 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.53 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {2 \, b x + 3 \, a}{2 \, {\left (a^{2} b^{2} x^{2} + 2 \, a^{3} b x + a^{4}\right )}} - \frac {\log \left (b x + a\right )}{a^{3}} + \frac {\log \left (x\right )}{a^{3}} \] Input:

integrate(1/x/arctanh(tanh(b*x+a))^3,x, algorithm="maxima")
 

Output:

1/2*(2*b*x + 3*a)/(a^2*b^2*x^2 + 2*a^3*b*x + a^4) - log(b*x + a)/a^3 + log 
(x)/a^3
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.44 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=-\frac {\log \left ({\left | b x + a \right |}\right )}{a^{3}} + \frac {\log \left ({\left | x \right |}\right )}{a^{3}} + \frac {2 \, a b x + 3 \, a^{2}}{2 \, {\left (b x + a\right )}^{2} a^{3}} \] Input:

integrate(1/x/arctanh(tanh(b*x+a))^3,x, algorithm="giac")
 

Output:

-log(abs(b*x + a))/a^3 + log(abs(x))/a^3 + 1/2*(2*a*b*x + 3*a^2)/((b*x + a 
)^2*a^3)
 

Mupad [B] (verification not implemented)

Time = 5.43 (sec) , antiderivative size = 645, normalized size of antiderivative = 6.65 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx =\text {Too large to display} \] Input:

int(1/(x*atanh(tanh(a + b*x))^3),x)
 

Output:

-(12*log(1/(exp(2*a)*exp(2*b*x) + 1))^2 - 24*log(1/(exp(2*a)*exp(2*b*x) + 
1))*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*e 
xp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^2*atan((log((exp(2*a)*exp(2*b*x))/(e 
xp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2*a)*exp(2*b*x) + 1))*1i + b*x*2i 
)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2*b*x))/(exp(2*a)* 
exp(2*b*x) + 1)) + 2*b*x))*16i - log(1/(exp(2*a)*exp(2*b*x) + 1))^2*atan(( 
log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2*a)* 
exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp 
(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*16i + 12*log((exp(2 
*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))^2 + 16*b^2*x^2 + log(1/(exp(2*a 
)*exp(2*b*x) + 1))*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*at 
an((log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*1i - log(1/(exp(2 
*a)*exp(2*b*x) + 1))*1i + b*x*2i)/(log(1/(exp(2*a)*exp(2*b*x) + 1)) - log( 
(exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*32i + b*x*(32*l 
og(1/(exp(2*a)*exp(2*b*x) + 1)) - 32*log((exp(2*a)*exp(2*b*x))/(exp(2*a)*e 
xp(2*b*x) + 1))))/((log(1/(exp(2*a)*exp(2*b*x) + 1)) - log((exp(2*a)*exp(2 
*b*x))/(exp(2*a)*exp(2*b*x) + 1)))^2*(log(1/(exp(2*a)*exp(2*b*x) + 1)) - l 
og((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3)
 

Reduce [F]

\[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^3} \, dx=\int \frac {1}{\mathit {atanh} \left (\tanh \left (b x +a \right )\right )^{3} x}d x \] Input:

int(1/x/atanh(tanh(b*x+a))^3,x)
 

Output:

int(1/(atanh(tanh(a + b*x))**3*x),x)