\(\int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx\) [163]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 108 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{(b x-\text {arctanh}(\tanh (a+b x)))^{5/2}}-\frac {2}{3 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^{3/2}}+\frac {2}{(b x-\text {arctanh}(\tanh (a+b x)))^2 \sqrt {\text {arctanh}(\tanh (a+b x))}} \] Output:

2*arctan(arctanh(tanh(b*x+a))^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/(b*x 
-arctanh(tanh(b*x+a)))^(5/2)-2/3/(b*x-arctanh(tanh(b*x+a)))/arctanh(tanh(b 
*x+a))^(3/2)+2/(b*x-arctanh(tanh(b*x+a)))^2/arctanh(tanh(b*x+a))^(1/2)
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.84 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{\sqrt {-b x+\text {arctanh}(\tanh (a+b x))}}\right )}{(-b x+\text {arctanh}(\tanh (a+b x)))^{5/2}}+\frac {2 (-b x+4 \text {arctanh}(\tanh (a+b x)))}{3 \text {arctanh}(\tanh (a+b x))^{3/2} (-b x+\text {arctanh}(\tanh (a+b x)))^2} \] Input:

Integrate[1/(x*ArcTanh[Tanh[a + b*x]]^(5/2)),x]
 

Output:

(-2*ArcTanh[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[-(b*x) + ArcTanh[Tanh[a + b* 
x]]]])/(-(b*x) + ArcTanh[Tanh[a + b*x]])^(5/2) + (2*(-(b*x) + 4*ArcTanh[Ta 
nh[a + b*x]]))/(3*ArcTanh[Tanh[a + b*x]]^(3/2)*(-(b*x) + ArcTanh[Tanh[a + 
b*x]])^2)
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.17, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2594, 2594, 2592}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {\int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{3/2}}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {2}{3 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^{3/2}}\)

\(\Big \downarrow \) 2594

\(\displaystyle -\frac {-\frac {\int \frac {1}{x \sqrt {\text {arctanh}(\tanh (a+b x))}}dx}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {2}{(b x-\text {arctanh}(\tanh (a+b x))) \sqrt {\text {arctanh}(\tanh (a+b x))}}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {2}{3 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^{3/2}}\)

\(\Big \downarrow \) 2592

\(\displaystyle -\frac {-\frac {2 \arctan \left (\frac {\sqrt {\text {arctanh}(\tanh (a+b x))}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{(b x-\text {arctanh}(\tanh (a+b x)))^{3/2}}-\frac {2}{(b x-\text {arctanh}(\tanh (a+b x))) \sqrt {\text {arctanh}(\tanh (a+b x))}}}{b x-\text {arctanh}(\tanh (a+b x))}-\frac {2}{3 (b x-\text {arctanh}(\tanh (a+b x))) \text {arctanh}(\tanh (a+b x))^{3/2}}\)

Input:

Int[1/(x*ArcTanh[Tanh[a + b*x]]^(5/2)),x]
 

Output:

-(((-2*ArcTan[Sqrt[ArcTanh[Tanh[a + b*x]]]/Sqrt[b*x - ArcTanh[Tanh[a + b*x 
]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(3/2) - 2/((b*x - ArcTanh[Tanh[a + b* 
x]])*Sqrt[ArcTanh[Tanh[a + b*x]]]))/(b*x - ArcTanh[Tanh[a + b*x]])) - 2/(3 
*(b*x - ArcTanh[Tanh[a + b*x]])*ArcTanh[Tanh[a + b*x]]^(3/2))
 

Defintions of rubi rules used

rule 2592
Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simpli 
fy[D[v, x]]}, Simp[2*(ArcTan[Sqrt[v]/Rt[(b*u - a*v)/a, 2]]/(a*Rt[(b*u - a*v 
)/a, 2])), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; PiecewiseLine 
arQ[u, v, x]
 

rule 2594
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[ 
D[v, x]]}, Simp[v^(n + 1)/((n + 1)*(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 
 1)*(b*u - a*v)))   Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Piecew 
iseLinearQ[u, v, x] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.86

method result size
default \(\frac {2}{\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right )^{2} \sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )}}+\frac {2}{3 \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) \operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{\frac {3}{2}}}-\frac {2 \,\operatorname {arctanh}\left (\frac {\sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )}}{\sqrt {\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x}}\right )}{\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right )^{\frac {5}{2}}}\) \(93\)

Input:

int(1/x/arctanh(tanh(b*x+a))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

2/(arctanh(tanh(b*x+a))-b*x)^2/arctanh(tanh(b*x+a))^(1/2)+2/3/(arctanh(tan 
h(b*x+a))-b*x)/arctanh(tanh(b*x+a))^(3/2)-2/(arctanh(tanh(b*x+a))-b*x)^(5/ 
2)*arctanh(arctanh(tanh(b*x+a))^(1/2)/(arctanh(tanh(b*x+a))-b*x)^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.61 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\left [\frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {a} \log \left (\frac {b x - 2 \, \sqrt {b x + a} \sqrt {a} + 2 \, a}{x}\right ) + 2 \, {\left (3 \, a b x + 4 \, a^{2}\right )} \sqrt {b x + a}}{3 \, {\left (a^{3} b^{2} x^{2} + 2 \, a^{4} b x + a^{5}\right )}}, \frac {2 \, {\left (3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x + a}}\right ) + {\left (3 \, a b x + 4 \, a^{2}\right )} \sqrt {b x + a}\right )}}{3 \, {\left (a^{3} b^{2} x^{2} + 2 \, a^{4} b x + a^{5}\right )}}\right ] \] Input:

integrate(1/x/arctanh(tanh(b*x+a))^(5/2),x, algorithm="fricas")
 

Output:

[1/3*(3*(b^2*x^2 + 2*a*b*x + a^2)*sqrt(a)*log((b*x - 2*sqrt(b*x + a)*sqrt( 
a) + 2*a)/x) + 2*(3*a*b*x + 4*a^2)*sqrt(b*x + a))/(a^3*b^2*x^2 + 2*a^4*b*x 
 + a^5), 2/3*(3*(b^2*x^2 + 2*a*b*x + a^2)*sqrt(-a)*arctan(sqrt(-a)/sqrt(b* 
x + a)) + (3*a*b*x + 4*a^2)*sqrt(b*x + a))/(a^3*b^2*x^2 + 2*a^4*b*x + a^5) 
]
 

Sympy [F]

\[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\int \frac {1}{x \operatorname {atanh}^{\frac {5}{2}}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \] Input:

integrate(1/x/atanh(tanh(b*x+a))**(5/2),x)
 

Output:

Integral(1/(x*atanh(tanh(a + b*x))**(5/2)), x)
 

Maxima [F]

\[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\int { \frac {1}{x \operatorname {artanh}\left (\tanh \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/x/arctanh(tanh(b*x+a))^(5/2),x, algorithm="maxima")
 

Output:

integrate(1/(x*arctanh(tanh(b*x + a))^(5/2)), x)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.42 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\frac {2 \, \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a^{2}} + \frac {2 \, {\left (3 \, b x + 4 \, a\right )}}{3 \, {\left (b x + a\right )}^{\frac {3}{2}} a^{2}} \] Input:

integrate(1/x/arctanh(tanh(b*x+a))^(5/2),x, algorithm="giac")
 

Output:

2*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a^2) + 2/3*(3*b*x + 4*a)/((b*x 
+ a)^(3/2)*a^2)
 

Mupad [B] (verification not implemented)

Time = 8.05 (sec) , antiderivative size = 886, normalized size of antiderivative = 8.20 \[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\text {Too large to display} \] Input:

int(1/(x*atanh(tanh(a + b*x))^(5/2)),x)
 

Output:

(2^(1/2)*log((((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - 
 log(2/(exp(2*a)*exp(2*b*x) + 1))/2)^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1 
)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2) 
*2i - 2^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b* 
x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x) + 2^(1/2)*b*x)*((2*a - log((2*exp( 
2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 
 1)) + 2*b*x)^5 + 40*a^2*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp( 
2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^3 - 80*a^3*(2*a - 
 log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)* 
exp(2*b*x) + 1)) + 2*b*x)^2 - 32*a^5 - 10*a*(2*a - log((2*exp(2*a)*exp(2*b 
*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x 
)^4 + 80*a^4*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) 
 + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))*1i)/(2*x*(log(2/(exp(2*a)*ex 
p(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 
2*b*x)^(1/2)))*4i)/(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp 
(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(5/2) + (16*(log((2*exp(2*a)* 
exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))/2 - log(2/(exp(2*a)*exp(2*b*x) + 1) 
)/2)^(1/2))/((log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log 
(2/(exp(2*a)*exp(2*b*x) + 1)))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2* 
exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2) - (16*(log(...
 

Reduce [F]

\[ \int \frac {1}{x \text {arctanh}(\tanh (a+b x))^{5/2}} \, dx=\int \frac {\sqrt {\mathit {atanh} \left (\tanh \left (b x +a \right )\right )}}{\mathit {atanh} \left (\tanh \left (b x +a \right )\right )^{3} x}d x \] Input:

int(1/x/atanh(tanh(b*x+a))^(5/2),x)
 

Output:

int(sqrt(atanh(tanh(a + b*x)))/(atanh(tanh(a + b*x))**3*x),x)