\(\int \frac {a+b \text {arctanh}(\frac {c}{x^2})}{x^6} \, dx\) [170]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 65 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=-\frac {2 b}{15 c x^3}+\frac {b \arctan \left (\frac {x}{\sqrt {c}}\right )}{5 c^{5/2}}-\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}+\frac {b \text {arctanh}\left (\frac {x}{\sqrt {c}}\right )}{5 c^{5/2}} \] Output:

-2/15*b/c/x^3+1/5*b*arctan(x/c^(1/2))/c^(5/2)-1/5*(a+b*arctanh(c/x^2))/x^5 
+1/5*b*arctanh(x/c^(1/2))/c^(5/2)
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.38 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=-\frac {a}{5 x^5}-\frac {2 b}{15 c x^3}+\frac {b \arctan \left (\frac {x}{\sqrt {c}}\right )}{5 c^{5/2}}-\frac {b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}-\frac {b \log \left (\sqrt {c}-x\right )}{10 c^{5/2}}+\frac {b \log \left (\sqrt {c}+x\right )}{10 c^{5/2}} \] Input:

Integrate[(a + b*ArcTanh[c/x^2])/x^6,x]
 

Output:

-1/5*a/x^5 - (2*b)/(15*c*x^3) + (b*ArcTan[x/Sqrt[c]])/(5*c^(5/2)) - (b*Arc 
Tanh[c/x^2])/(5*x^5) - (b*Log[Sqrt[c] - x])/(10*c^(5/2)) + (b*Log[Sqrt[c] 
+ x])/(10*c^(5/2))
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.14, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6452, 795, 847, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx\)

\(\Big \downarrow \) 6452

\(\displaystyle -\frac {2}{5} b c \int \frac {1}{\left (1-\frac {c^2}{x^4}\right ) x^8}dx-\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}\)

\(\Big \downarrow \) 795

\(\displaystyle -\frac {2}{5} b c \int \frac {1}{x^4 \left (x^4-c^2\right )}dx-\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {2}{5} b c \left (\frac {\int \frac {1}{x^4-c^2}dx}{c^2}+\frac {1}{3 c^2 x^3}\right )-\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}\)

\(\Big \downarrow \) 756

\(\displaystyle -\frac {2}{5} b c \left (\frac {-\frac {\int \frac {1}{c-x^2}dx}{2 c}-\frac {\int \frac {1}{x^2+c}dx}{2 c}}{c^2}+\frac {1}{3 c^2 x^3}\right )-\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2}{5} b c \left (\frac {-\frac {\int \frac {1}{c-x^2}dx}{2 c}-\frac {\arctan \left (\frac {x}{\sqrt {c}}\right )}{2 c^{3/2}}}{c^2}+\frac {1}{3 c^2 x^3}\right )-\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{5 x^5}-\frac {2}{5} b c \left (\frac {-\frac {\arctan \left (\frac {x}{\sqrt {c}}\right )}{2 c^{3/2}}-\frac {\text {arctanh}\left (\frac {x}{\sqrt {c}}\right )}{2 c^{3/2}}}{c^2}+\frac {1}{3 c^2 x^3}\right )\)

Input:

Int[(a + b*ArcTanh[c/x^2])/x^6,x]
 

Output:

-1/5*(a + b*ArcTanh[c/x^2])/x^5 - (2*b*c*(1/(3*c^2*x^3) + (-1/2*ArcTan[x/S 
qrt[c]]/c^(3/2) - ArcTanh[x/Sqrt[c]]/(2*c^(3/2)))/c^2))/5
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 795
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)* 
(b + a/x^n)^p, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && NegQ[n]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 6452
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] : 
> Simp[x^(m + 1)*((a + b*ArcTanh[c*x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m 
+ 1))   Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x 
], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1 
] && IntegerQ[m])) && NeQ[m, -1]
 
Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.85

method result size
parts \(-\frac {a}{5 x^{5}}-\frac {b \,\operatorname {arctanh}\left (\frac {c}{x^{2}}\right )}{5 x^{5}}-\frac {2 b}{15 c \,x^{3}}+\frac {b \arctan \left (\frac {x}{\sqrt {c}}\right )}{5 c^{\frac {5}{2}}}+\frac {b \,\operatorname {arctanh}\left (\frac {\sqrt {c}}{x}\right )}{5 c^{\frac {5}{2}}}\) \(55\)
derivativedivides \(-\frac {a}{5 x^{5}}-\frac {b \,\operatorname {arctanh}\left (\frac {c}{x^{2}}\right )}{5 x^{5}}-\frac {2 b}{15 c \,x^{3}}+\frac {b \,\operatorname {arctanh}\left (\frac {\sqrt {c}}{x}\right )}{5 c^{\frac {5}{2}}}-\frac {b \arctan \left (\frac {\sqrt {c}}{x}\right )}{5 c^{\frac {5}{2}}}\) \(57\)
default \(-\frac {a}{5 x^{5}}-\frac {b \,\operatorname {arctanh}\left (\frac {c}{x^{2}}\right )}{5 x^{5}}-\frac {2 b}{15 c \,x^{3}}+\frac {b \,\operatorname {arctanh}\left (\frac {\sqrt {c}}{x}\right )}{5 c^{\frac {5}{2}}}-\frac {b \arctan \left (\frac {\sqrt {c}}{x}\right )}{5 c^{\frac {5}{2}}}\) \(57\)
risch \(-\frac {b \ln \left (x^{2}+c \right )}{10 x^{5}}-\frac {4 a -2 i b \pi -i b \pi {\operatorname {csgn}\left (\frac {i \left (x^{2}+c \right )}{x^{2}}\right )}^{3}+2 i b \pi {\operatorname {csgn}\left (\frac {i \left (-x^{2}+c \right )}{x^{2}}\right )}^{2}+i b \pi \,\operatorname {csgn}\left (\frac {i}{x^{2}}\right ) \operatorname {csgn}\left (i \left (-x^{2}+c \right )\right ) \operatorname {csgn}\left (\frac {i \left (-x^{2}+c \right )}{x^{2}}\right )-i b \pi \,\operatorname {csgn}\left (\frac {i}{x^{2}}\right ) \operatorname {csgn}\left (i \left (x^{2}+c \right )\right ) \operatorname {csgn}\left (\frac {i \left (x^{2}+c \right )}{x^{2}}\right )+i b \pi \,\operatorname {csgn}\left (\frac {i}{x^{2}}\right ) {\operatorname {csgn}\left (\frac {i \left (x^{2}+c \right )}{x^{2}}\right )}^{2}-i b \pi \,\operatorname {csgn}\left (i \left (-x^{2}+c \right )\right ) {\operatorname {csgn}\left (\frac {i \left (-x^{2}+c \right )}{x^{2}}\right )}^{2}+i b \pi \,\operatorname {csgn}\left (i \left (x^{2}+c \right )\right ) {\operatorname {csgn}\left (\frac {i \left (x^{2}+c \right )}{x^{2}}\right )}^{2}-i b \pi {\operatorname {csgn}\left (\frac {i \left (-x^{2}+c \right )}{x^{2}}\right )}^{3}-i b \pi \,\operatorname {csgn}\left (\frac {i}{x^{2}}\right ) {\operatorname {csgn}\left (\frac {i \left (-x^{2}+c \right )}{x^{2}}\right )}^{2}}{20 x^{5}}+\frac {b \ln \left (-x^{2}+c \right )}{10 x^{5}}-\frac {2 b}{15 c \,x^{3}}+\frac {b \,\operatorname {arctanh}\left (\frac {x}{\sqrt {c}}\right )}{5 c^{\frac {5}{2}}}+\frac {b \arctan \left (\frac {x}{\sqrt {c}}\right )}{5 c^{\frac {5}{2}}}\) \(320\)

Input:

int((a+b*arctanh(c/x^2))/x^6,x,method=_RETURNVERBOSE)
 

Output:

-1/5*a/x^5-1/5*b/x^5*arctanh(c/x^2)-2/15*b/c/x^3+1/5*b*arctan(x/c^(1/2))/c 
^(5/2)+1/5*b/c^(5/2)*arctanh(1/x*c^(1/2))
 

Fricas [A] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 103 vs. \(2 (49) = 98\).

Time = 0.09 (sec) , antiderivative size = 196, normalized size of antiderivative = 3.02 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=\left [\frac {6 \, b \sqrt {c} x^{5} \arctan \left (\frac {x}{\sqrt {c}}\right ) + 3 \, b \sqrt {c} x^{5} \log \left (\frac {x^{2} + 2 \, \sqrt {c} x + c}{x^{2} - c}\right ) - 4 \, b c^{2} x^{2} - 3 \, b c^{3} \log \left (\frac {x^{2} + c}{x^{2} - c}\right ) - 6 \, a c^{3}}{30 \, c^{3} x^{5}}, -\frac {6 \, b \sqrt {-c} x^{5} \arctan \left (\frac {\sqrt {-c} x}{c}\right ) + 3 \, b \sqrt {-c} x^{5} \log \left (\frac {x^{2} - 2 \, \sqrt {-c} x - c}{x^{2} + c}\right ) + 4 \, b c^{2} x^{2} + 3 \, b c^{3} \log \left (\frac {x^{2} + c}{x^{2} - c}\right ) + 6 \, a c^{3}}{30 \, c^{3} x^{5}}\right ] \] Input:

integrate((a+b*arctanh(c/x^2))/x^6,x, algorithm="fricas")
 

Output:

[1/30*(6*b*sqrt(c)*x^5*arctan(x/sqrt(c)) + 3*b*sqrt(c)*x^5*log((x^2 + 2*sq 
rt(c)*x + c)/(x^2 - c)) - 4*b*c^2*x^2 - 3*b*c^3*log((x^2 + c)/(x^2 - c)) - 
 6*a*c^3)/(c^3*x^5), -1/30*(6*b*sqrt(-c)*x^5*arctan(sqrt(-c)*x/c) + 3*b*sq 
rt(-c)*x^5*log((x^2 - 2*sqrt(-c)*x - c)/(x^2 + c)) + 4*b*c^2*x^2 + 3*b*c^3 
*log((x^2 + c)/(x^2 - c)) + 6*a*c^3)/(c^3*x^5)]
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 994 vs. \(2 (60) = 120\).

Time = 6.72 (sec) , antiderivative size = 994, normalized size of antiderivative = 15.29 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx =\text {Too large to display} \] Input:

integrate((a+b*atanh(c/x**2))/x**6,x)
 

Output:

Piecewise((-a/(5*x**5), Eq(c, 0)), (-(a - oo*b)/(5*x**5), Eq(c, -x**2)), ( 
-(a + oo*b)/(5*x**5), Eq(c, x**2)), (6*a*c**13*sqrt(-c)/(-30*c**13*x**5*sq 
rt(-c) + 30*c**11*x**9*sqrt(-c)) - 6*a*c**11*x**4*sqrt(-c)/(-30*c**13*x**5 
*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) + 6*b*c**(21/2)*x**5*sqrt(-c)*log(-sqr 
t(c) + x)/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) - 3*b*c**(21/ 
2)*x**5*sqrt(-c)*log(x - sqrt(-c))/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x** 
9*sqrt(-c)) - 3*b*c**(21/2)*x**5*sqrt(-c)*log(x + sqrt(-c))/(-30*c**13*x** 
5*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) + 6*b*c**(21/2)*x**5*sqrt(-c)*atanh(c 
/x**2)/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) - 6*b*c**(17/2)* 
x**9*sqrt(-c)*log(-sqrt(c) + x)/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x**9*s 
qrt(-c)) + 3*b*c**(17/2)*x**9*sqrt(-c)*log(x - sqrt(-c))/(-30*c**13*x**5*s 
qrt(-c) + 30*c**11*x**9*sqrt(-c)) + 3*b*c**(17/2)*x**9*sqrt(-c)*log(x + sq 
rt(-c))/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) - 6*b*c**(17/2) 
*x**9*sqrt(-c)*atanh(c/x**2)/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x**9*sqrt 
(-c)) + 6*b*c**13*sqrt(-c)*atanh(c/x**2)/(-30*c**13*x**5*sqrt(-c) + 30*c** 
11*x**9*sqrt(-c)) + 4*b*c**12*x**2*sqrt(-c)/(-30*c**13*x**5*sqrt(-c) + 30* 
c**11*x**9*sqrt(-c)) - 3*b*c**11*x**5*log(x - sqrt(-c))/(-30*c**13*x**5*sq 
rt(-c) + 30*c**11*x**9*sqrt(-c)) + 3*b*c**11*x**5*log(x + sqrt(-c))/(-30*c 
**13*x**5*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) - 6*b*c**11*x**4*sqrt(-c)*ata 
nh(c/x**2)/(-30*c**13*x**5*sqrt(-c) + 30*c**11*x**9*sqrt(-c)) - 4*b*c**...
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=\frac {1}{30} \, {\left (c {\left (\frac {6 \, \arctan \left (\frac {x}{\sqrt {c}}\right )}{c^{\frac {7}{2}}} - \frac {3 \, \log \left (\frac {x - \sqrt {c}}{x + \sqrt {c}}\right )}{c^{\frac {7}{2}}} - \frac {4}{c^{2} x^{3}}\right )} - \frac {6 \, \operatorname {artanh}\left (\frac {c}{x^{2}}\right )}{x^{5}}\right )} b - \frac {a}{5 \, x^{5}} \] Input:

integrate((a+b*arctanh(c/x^2))/x^6,x, algorithm="maxima")
 

Output:

1/30*(c*(6*arctan(x/sqrt(c))/c^(7/2) - 3*log((x - sqrt(c))/(x + sqrt(c)))/ 
c^(7/2) - 4/(c^2*x^3)) - 6*arctanh(c/x^2)/x^5)*b - 1/5*a/x^5
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.14 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=-\frac {1}{5} \, b {\left (\frac {\arctan \left (\frac {x}{\sqrt {-c}}\right )}{\sqrt {-c} c^{2}} - \frac {\arctan \left (\frac {x}{\sqrt {c}}\right )}{c^{\frac {5}{2}}}\right )} - \frac {b \log \left (\frac {x^{2} + c}{x^{2} - c}\right )}{10 \, x^{5}} - \frac {2 \, b x^{2} + 3 \, a c}{15 \, c x^{5}} \] Input:

integrate((a+b*arctanh(c/x^2))/x^6,x, algorithm="giac")
 

Output:

-1/5*b*(arctan(x/sqrt(-c))/(sqrt(-c)*c^2) - arctan(x/sqrt(c))/c^(5/2)) - 1 
/10*b*log((x^2 + c)/(x^2 - c))/x^5 - 1/15*(2*b*x^2 + 3*a*c)/(c*x^5)
 

Mupad [B] (verification not implemented)

Time = 3.92 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.06 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=\frac {b\,\mathrm {atan}\left (\frac {x}{\sqrt {c}}\right )}{5\,c^{5/2}}-\frac {2\,b}{15\,c\,x^3}-\frac {a}{5\,x^5}-\frac {b\,\ln \left (x^2+c\right )}{10\,x^5}+\frac {b\,\ln \left (x^2-c\right )}{10\,x^5}-\frac {b\,\mathrm {atan}\left (\frac {x\,1{}\mathrm {i}}{\sqrt {c}}\right )\,1{}\mathrm {i}}{5\,c^{5/2}} \] Input:

int((a + b*atanh(c/x^2))/x^6,x)
 

Output:

(b*atan(x/c^(1/2)))/(5*c^(5/2)) - (2*b)/(15*c*x^3) - a/(5*x^5) - (b*atan(( 
x*1i)/c^(1/2))*1i)/(5*c^(5/2)) - (b*log(c + x^2))/(10*x^5) + (b*log(x^2 - 
c))/(10*x^5)
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.45 \[ \int \frac {a+b \text {arctanh}\left (\frac {c}{x^2}\right )}{x^6} \, dx=\frac {6 \sqrt {c}\, \mathit {atan} \left (\frac {x}{\sqrt {c}}\right ) b \,x^{5}-6 \sqrt {c}\, \mathit {atanh} \left (\frac {c}{x^{2}}\right ) b \,x^{5}-6 \mathit {atanh} \left (\frac {c}{x^{2}}\right ) b \,c^{3}-6 \sqrt {c}\, \mathrm {log}\left (\sqrt {c}-x \right ) b \,x^{5}+3 \sqrt {c}\, \mathrm {log}\left (x^{2}+c \right ) b \,x^{5}-6 a \,c^{3}-4 b \,c^{2} x^{2}}{30 c^{3} x^{5}} \] Input:

int((a+b*atanh(c/x^2))/x^6,x)
 

Output:

(6*sqrt(c)*atan(x/sqrt(c))*b*x**5 - 6*sqrt(c)*atanh(c/x**2)*b*x**5 - 6*ata 
nh(c/x**2)*b*c**3 - 6*sqrt(c)*log(sqrt(c) - x)*b*x**5 + 3*sqrt(c)*log(c + 
x**2)*b*x**5 - 6*a*c**3 - 4*b*c**2*x**2)/(30*c**3*x**5)