\(\int x^2 (a+b \text {arctanh}(c x^{3/2}))^2 \, dx\) [220]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 101 \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\frac {2 a b x^{3/2}}{3 c}+\frac {2 b^2 x^{3/2} \text {arctanh}\left (c x^{3/2}\right )}{3 c}-\frac {\left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2}{3 c^2}+\frac {1}{3} x^3 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2+\frac {b^2 \log \left (1-c^2 x^3\right )}{3 c^2} \] Output:

2/3*a*b*x^(3/2)/c+2/3*b^2*x^(3/2)*arctanh(c*x^(3/2))/c-1/3*(a+b*arctanh(c* 
x^(3/2)))^2/c^2+1/3*x^3*(a+b*arctanh(c*x^(3/2)))^2+1/3*b^2*ln(-c^2*x^3+1)/ 
c^2
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.21 \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\frac {2 a b c x^{3/2}+a^2 c^2 x^3+2 b c x^{3/2} \left (b+a c x^{3/2}\right ) \text {arctanh}\left (c x^{3/2}\right )+b^2 \left (-1+c^2 x^3\right ) \text {arctanh}\left (c x^{3/2}\right )^2+b (a+b) \log \left (1-c x^{3/2}\right )-a b \log \left (1+c x^{3/2}\right )+b^2 \log \left (1+c x^{3/2}\right )}{3 c^2} \] Input:

Integrate[x^2*(a + b*ArcTanh[c*x^(3/2)])^2,x]
 

Output:

(2*a*b*c*x^(3/2) + a^2*c^2*x^3 + 2*b*c*x^(3/2)*(b + a*c*x^(3/2))*ArcTanh[c 
*x^(3/2)] + b^2*(-1 + c^2*x^3)*ArcTanh[c*x^(3/2)]^2 + b*(a + b)*Log[1 - c* 
x^(3/2)] - a*b*Log[1 + c*x^(3/2)] + b^2*Log[1 + c*x^(3/2)])/(3*c^2)
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {6454, 6452, 6542, 2009, 6510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx\)

\(\Big \downarrow \) 6454

\(\displaystyle \frac {2}{3} \int x^{3/2} \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2dx^{3/2}\)

\(\Big \downarrow \) 6452

\(\displaystyle \frac {2}{3} \left (\frac {1}{2} x^3 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2-b c \int \frac {x^3 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )}{1-c^2 x^3}dx^{3/2}\right )\)

\(\Big \downarrow \) 6542

\(\displaystyle \frac {2}{3} \left (\frac {1}{2} x^3 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2-b c \left (\frac {\int \frac {a+b \text {arctanh}\left (c x^{3/2}\right )}{1-c^2 x^3}dx^{3/2}}{c^2}-\frac {\int \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )dx^{3/2}}{c^2}\right )\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2}{3} \left (\frac {1}{2} x^3 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2-b c \left (\frac {\int \frac {a+b \text {arctanh}\left (c x^{3/2}\right )}{1-c^2 x^3}dx^{3/2}}{c^2}-\frac {a x^{3/2}+b x^{3/2} \text {arctanh}\left (c x^{3/2}\right )+\frac {b \log \left (1-c^2 x^3\right )}{2 c}}{c^2}\right )\right )\)

\(\Big \downarrow \) 6510

\(\displaystyle \frac {2}{3} \left (\frac {1}{2} x^3 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2-b c \left (\frac {\left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2}{2 b c^3}-\frac {a x^{3/2}+b x^{3/2} \text {arctanh}\left (c x^{3/2}\right )+\frac {b \log \left (1-c^2 x^3\right )}{2 c}}{c^2}\right )\right )\)

Input:

Int[x^2*(a + b*ArcTanh[c*x^(3/2)])^2,x]
 

Output:

(2*((x^3*(a + b*ArcTanh[c*x^(3/2)])^2)/2 - b*c*((a + b*ArcTanh[c*x^(3/2)]) 
^2/(2*b*c^3) - (a*x^(3/2) + b*x^(3/2)*ArcTanh[c*x^(3/2)] + (b*Log[1 - c^2* 
x^3])/(2*c))/c^2)))/3
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6452
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] : 
> Simp[x^(m + 1)*((a + b*ArcTanh[c*x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m 
+ 1))   Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x 
], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1 
] && IntegerQ[m])) && NeQ[m, -1]
 

rule 6454
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> 
 Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*ArcTanh[c*x])^p, x 
], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Simpl 
ify[(m + 1)/n]]
 

rule 6510
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symb 
ol] :> Simp[(a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b 
, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]
 

rule 6542
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + ( 
e_.)*(x_)^2), x_Symbol] :> Simp[f^2/e   Int[(f*x)^(m - 2)*(a + b*ArcTanh[c* 
x])^p, x], x] - Simp[d*(f^2/e)   Int[(f*x)^(m - 2)*((a + b*ArcTanh[c*x])^p/ 
(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 
 1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(219\) vs. \(2(81)=162\).

Time = 1.16 (sec) , antiderivative size = 220, normalized size of antiderivative = 2.18

method result size
parts \(\frac {a^{2} x^{3}}{3}+\frac {2 b^{2} \left (\frac {c^{2} x^{3} \operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right )^{2}}{2}+\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) c \,x^{\frac {3}{2}}+\frac {\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) \ln \left (c \,x^{\frac {3}{2}}-1\right )}{2}-\frac {\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) \ln \left (c \,x^{\frac {3}{2}}+1\right )}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )^{2}}{8}-\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right ) \ln \left (\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )}{4}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )}{2}-\frac {\left (\ln \left (c \,x^{\frac {3}{2}}+1\right )-\ln \left (\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )\right ) \ln \left (-\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )}{4}+\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )^{2}}{8}\right )}{3 c^{2}}+\frac {4 a b \left (\frac {c^{2} x^{3} \operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right )}{2}+\frac {c \,x^{\frac {3}{2}}}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )}{4}-\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )}{4}\right )}{3 c^{2}}\) \(220\)
derivativedivides \(\frac {\frac {a^{2} c^{2} x^{3}}{3}+\frac {2 b^{2} \left (\frac {c^{2} x^{3} \operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right )^{2}}{2}+\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) c \,x^{\frac {3}{2}}+\frac {\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) \ln \left (c \,x^{\frac {3}{2}}-1\right )}{2}-\frac {\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) \ln \left (c \,x^{\frac {3}{2}}+1\right )}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )^{2}}{8}-\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right ) \ln \left (\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )}{4}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )}{2}-\frac {\left (\ln \left (c \,x^{\frac {3}{2}}+1\right )-\ln \left (\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )\right ) \ln \left (-\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )}{4}+\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )^{2}}{8}\right )}{3}+\frac {4 a b \left (\frac {c^{2} x^{3} \operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right )}{2}+\frac {c \,x^{\frac {3}{2}}}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )}{4}-\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )}{4}\right )}{3}}{c^{2}}\) \(221\)
default \(\frac {\frac {a^{2} c^{2} x^{3}}{3}+\frac {2 b^{2} \left (\frac {c^{2} x^{3} \operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right )^{2}}{2}+\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) c \,x^{\frac {3}{2}}+\frac {\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) \ln \left (c \,x^{\frac {3}{2}}-1\right )}{2}-\frac {\operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right ) \ln \left (c \,x^{\frac {3}{2}}+1\right )}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )^{2}}{8}-\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right ) \ln \left (\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )}{4}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )}{2}-\frac {\left (\ln \left (c \,x^{\frac {3}{2}}+1\right )-\ln \left (\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )\right ) \ln \left (-\frac {c \,x^{\frac {3}{2}}}{2}+\frac {1}{2}\right )}{4}+\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )^{2}}{8}\right )}{3}+\frac {4 a b \left (\frac {c^{2} x^{3} \operatorname {arctanh}\left (c \,x^{\frac {3}{2}}\right )}{2}+\frac {c \,x^{\frac {3}{2}}}{2}+\frac {\ln \left (c \,x^{\frac {3}{2}}-1\right )}{4}-\frac {\ln \left (c \,x^{\frac {3}{2}}+1\right )}{4}\right )}{3}}{c^{2}}\) \(221\)

Input:

int(x^2*(a+b*arctanh(c*x^(3/2)))^2,x,method=_RETURNVERBOSE)
 

Output:

1/3*a^2*x^3+2/3*b^2/c^2*(1/2*c^2*x^3*arctanh(c*x^(3/2))^2+arctanh(c*x^(3/2 
))*c*x^(3/2)+1/2*arctanh(c*x^(3/2))*ln(c*x^(3/2)-1)-1/2*arctanh(c*x^(3/2)) 
*ln(c*x^(3/2)+1)+1/8*ln(c*x^(3/2)-1)^2-1/4*ln(c*x^(3/2)-1)*ln(1/2*c*x^(3/2 
)+1/2)+1/2*ln(c*x^(3/2)-1)+1/2*ln(c*x^(3/2)+1)-1/4*(ln(c*x^(3/2)+1)-ln(1/2 
*c*x^(3/2)+1/2))*ln(-1/2*c*x^(3/2)+1/2)+1/8*ln(c*x^(3/2)+1)^2)+4/3*a*b/c^2 
*(1/2*c^2*x^3*arctanh(c*x^(3/2))+1/2*c*x^(3/2)+1/4*ln(c*x^(3/2)-1)-1/4*ln( 
c*x^(3/2)+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 179 vs. \(2 (81) = 162\).

Time = 0.11 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.77 \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\frac {4 \, a^{2} c^{2} x^{3} + 8 \, a b c x^{\frac {3}{2}} + {\left (b^{2} c^{2} x^{3} - b^{2}\right )} \log \left (-\frac {c^{2} x^{3} + 2 \, c x^{\frac {3}{2}} + 1}{c^{2} x^{3} - 1}\right )^{2} + 4 \, {\left (a b c^{2} - a b + b^{2}\right )} \log \left (c x^{\frac {3}{2}} + 1\right ) - 4 \, {\left (a b c^{2} - a b - b^{2}\right )} \log \left (c x^{\frac {3}{2}} - 1\right ) + 4 \, {\left (a b c^{2} x^{3} + b^{2} c x^{\frac {3}{2}} - a b c^{2}\right )} \log \left (-\frac {c^{2} x^{3} + 2 \, c x^{\frac {3}{2}} + 1}{c^{2} x^{3} - 1}\right )}{12 \, c^{2}} \] Input:

integrate(x^2*(a+b*arctanh(c*x^(3/2)))^2,x, algorithm="fricas")
 

Output:

1/12*(4*a^2*c^2*x^3 + 8*a*b*c*x^(3/2) + (b^2*c^2*x^3 - b^2)*log(-(c^2*x^3 
+ 2*c*x^(3/2) + 1)/(c^2*x^3 - 1))^2 + 4*(a*b*c^2 - a*b + b^2)*log(c*x^(3/2 
) + 1) - 4*(a*b*c^2 - a*b - b^2)*log(c*x^(3/2) - 1) + 4*(a*b*c^2*x^3 + b^2 
*c*x^(3/2) - a*b*c^2)*log(-(c^2*x^3 + 2*c*x^(3/2) + 1)/(c^2*x^3 - 1)))/c^2
 

Sympy [F(-1)]

Timed out. \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\text {Timed out} \] Input:

integrate(x**2*(a+b*atanh(c*x**(3/2)))**2,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 186 vs. \(2 (81) = 162\).

Time = 0.04 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.84 \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\frac {1}{3} \, b^{2} x^{3} \operatorname {artanh}\left (c x^{\frac {3}{2}}\right )^{2} + \frac {1}{3} \, a^{2} x^{3} + \frac {1}{3} \, {\left (2 \, x^{3} \operatorname {artanh}\left (c x^{\frac {3}{2}}\right ) + c {\left (\frac {2 \, x^{\frac {3}{2}}}{c^{2}} - \frac {\log \left (c x^{\frac {3}{2}} + 1\right )}{c^{3}} + \frac {\log \left (c x^{\frac {3}{2}} - 1\right )}{c^{3}}\right )}\right )} a b + \frac {1}{12} \, {\left (4 \, c {\left (\frac {2 \, x^{\frac {3}{2}}}{c^{2}} - \frac {\log \left (c x^{\frac {3}{2}} + 1\right )}{c^{3}} + \frac {\log \left (c x^{\frac {3}{2}} - 1\right )}{c^{3}}\right )} \operatorname {artanh}\left (c x^{\frac {3}{2}}\right ) - \frac {2 \, {\left (\log \left (c x^{\frac {3}{2}} - 1\right ) - 2\right )} \log \left (c x^{\frac {3}{2}} + 1\right ) - \log \left (c x^{\frac {3}{2}} + 1\right )^{2} - \log \left (c x^{\frac {3}{2}} - 1\right )^{2} - 4 \, \log \left (c x^{\frac {3}{2}} - 1\right )}{c^{2}}\right )} b^{2} \] Input:

integrate(x^2*(a+b*arctanh(c*x^(3/2)))^2,x, algorithm="maxima")
 

Output:

1/3*b^2*x^3*arctanh(c*x^(3/2))^2 + 1/3*a^2*x^3 + 1/3*(2*x^3*arctanh(c*x^(3 
/2)) + c*(2*x^(3/2)/c^2 - log(c*x^(3/2) + 1)/c^3 + log(c*x^(3/2) - 1)/c^3) 
)*a*b + 1/12*(4*c*(2*x^(3/2)/c^2 - log(c*x^(3/2) + 1)/c^3 + log(c*x^(3/2) 
- 1)/c^3)*arctanh(c*x^(3/2)) - (2*(log(c*x^(3/2) - 1) - 2)*log(c*x^(3/2) + 
 1) - log(c*x^(3/2) + 1)^2 - log(c*x^(3/2) - 1)^2 - 4*log(c*x^(3/2) - 1))/ 
c^2)*b^2
                                                                                    
                                                                                    
 

Giac [F]

\[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\int { {\left (b \operatorname {artanh}\left (c x^{\frac {3}{2}}\right ) + a\right )}^{2} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*arctanh(c*x^(3/2)))^2,x, algorithm="giac")
 

Output:

integrate((b*arctanh(c*x^(3/2)) + a)^2*x^2, x)
 

Mupad [B] (verification not implemented)

Time = 3.89 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.04 \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\frac {c\,\left (\frac {2\,b^2\,x^{3/2}\,\mathrm {atanh}\left (c\,x^{3/2}\right )}{3}+\frac {2\,a\,b\,x^{3/2}}{3}\right )-\frac {b^2\,{\mathrm {atanh}\left (c\,x^{3/2}\right )}^2}{3}+\frac {b^2\,\ln \left (c^2\,x^3-1\right )}{3}-\frac {2\,a\,b\,\mathrm {atanh}\left (c\,x^{3/2}\right )}{3}}{c^2}+\frac {a^2\,x^3}{3}+\frac {b^2\,x^3\,{\mathrm {atanh}\left (c\,x^{3/2}\right )}^2}{3}+\frac {2\,a\,b\,x^3\,\mathrm {atanh}\left (c\,x^{3/2}\right )}{3} \] Input:

int(x^2*(a + b*atanh(c*x^(3/2)))^2,x)
 

Output:

(c*((2*b^2*x^(3/2)*atanh(c*x^(3/2)))/3 + (2*a*b*x^(3/2))/3) - (b^2*atanh(c 
*x^(3/2))^2)/3 + (b^2*log(c^2*x^3 - 1))/3 - (2*a*b*atanh(c*x^(3/2)))/3)/c^ 
2 + (a^2*x^3)/3 + (b^2*x^3*atanh(c*x^(3/2))^2)/3 + (2*a*b*x^3*atanh(c*x^(3 
/2)))/3
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.42 \[ \int x^2 \left (a+b \text {arctanh}\left (c x^{3/2}\right )\right )^2 \, dx=\frac {\mathit {atanh} \left (\sqrt {x}\, c x \right )^{2} b^{2} c^{2} x^{3}-\mathit {atanh} \left (\sqrt {x}\, c x \right )^{2} b^{2}+2 \sqrt {x}\, \mathit {atanh} \left (\sqrt {x}\, c x \right ) b^{2} c x +2 \mathit {atanh} \left (\sqrt {x}\, c x \right ) a b \,c^{2} x^{3}-2 \mathit {atanh} \left (\sqrt {x}\, c x \right ) a b -2 \mathit {atanh} \left (\sqrt {x}\, c x \right ) b^{2}+2 \sqrt {x}\, a b c x +2 \,\mathrm {log}\left (c^{\frac {2}{3}} x -\sqrt {x}\, c^{\frac {1}{3}}+1\right ) b^{2}+2 \,\mathrm {log}\left (\sqrt {x}\, c^{\frac {2}{3}}+c^{\frac {1}{3}}\right ) b^{2}+a^{2} c^{2} x^{3}}{3 c^{2}} \] Input:

int(x^2*(a+b*atanh(c*x^(3/2)))^2,x)
 

Output:

(atanh(sqrt(x)*c*x)**2*b**2*c**2*x**3 - atanh(sqrt(x)*c*x)**2*b**2 + 2*sqr 
t(x)*atanh(sqrt(x)*c*x)*b**2*c*x + 2*atanh(sqrt(x)*c*x)*a*b*c**2*x**3 - 2* 
atanh(sqrt(x)*c*x)*a*b - 2*atanh(sqrt(x)*c*x)*b**2 + 2*sqrt(x)*a*b*c*x + 2 
*log(c**(2/3)*x - sqrt(x)*c**(1/3) + 1)*b**2 + 2*log(sqrt(x)*c**(2/3) + c* 
*(1/3))*b**2 + a**2*c**2*x**3)/(3*c**2)