\(\int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx\) [35]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 130 \[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=-\frac {(a+b \text {arctanh}(c+d x)) \log \left (\frac {2}{1+c+d x}\right )}{f}+\frac {(a+b \text {arctanh}(c+d x)) \log \left (\frac {2 d (e+f x)}{(d e+f-c f) (1+c+d x)}\right )}{f}+\frac {b \operatorname {PolyLog}\left (2,1-\frac {2}{1+c+d x}\right )}{2 f}-\frac {b \operatorname {PolyLog}\left (2,1-\frac {2 d (e+f x)}{(d e+f-c f) (1+c+d x)}\right )}{2 f} \] Output:

-(a+b*arctanh(d*x+c))*ln(2/(d*x+c+1))/f+(a+b*arctanh(d*x+c))*ln(2*d*(f*x+e 
)/(-c*f+d*e+f)/(d*x+c+1))/f+1/2*b*polylog(2,1-2/(d*x+c+1))/f-1/2*b*polylog 
(2,1-2*d*(f*x+e)/(-c*f+d*e+f)/(d*x+c+1))/f
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.14 \[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\frac {a \log (e+f x)}{f}-\frac {b \log (1-c-d x) \log \left (\frac {d (e+f x)}{d e+f-c f}\right )}{2 f}+\frac {b \log (1+c+d x) \log \left (\frac {d (e+f x)}{d e-(1+c) f}\right )}{2 f}-\frac {b \operatorname {PolyLog}\left (2,\frac {f (1-c-d x)}{d e+f-c f}\right )}{2 f}+\frac {b \operatorname {PolyLog}\left (2,-\frac {f (1+c+d x)}{d e-f-c f}\right )}{2 f} \] Input:

Integrate[(a + b*ArcTanh[c + d*x])/(e + f*x),x]
 

Output:

(a*Log[e + f*x])/f - (b*Log[1 - c - d*x]*Log[(d*(e + f*x))/(d*e + f - c*f) 
])/(2*f) + (b*Log[1 + c + d*x]*Log[(d*(e + f*x))/(d*e - (1 + c)*f)])/(2*f) 
 - (b*PolyLog[2, (f*(1 - c - d*x))/(d*e + f - c*f)])/(2*f) + (b*PolyLog[2, 
 -((f*(1 + c + d*x))/(d*e - f - c*f))])/(2*f)
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6661, 27, 6472, 2849, 2752, 2897}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx\)

\(\Big \downarrow \) 6661

\(\displaystyle \frac {\int \frac {d (a+b \text {arctanh}(c+d x))}{d \left (e-\frac {c f}{d}\right )+f (c+d x)}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {a+b \text {arctanh}(c+d x)}{f (c+d x)-c f+d e}d(c+d x)\)

\(\Big \downarrow \) 6472

\(\displaystyle -\frac {b \int \frac {\log \left (\frac {2 (d e-c f+f (c+d x))}{(d e-c f+f) (c+d x+1)}\right )}{1-(c+d x)^2}d(c+d x)}{f}+\frac {b \int \frac {\log \left (\frac {2}{c+d x+1}\right )}{1-(c+d x)^2}d(c+d x)}{f}+\frac {(a+b \text {arctanh}(c+d x)) \log \left (\frac {2 (f (c+d x)-c f+d e)}{(c+d x+1) (-c f+d e+f)}\right )}{f}-\frac {\log \left (\frac {2}{c+d x+1}\right ) (a+b \text {arctanh}(c+d x))}{f}\)

\(\Big \downarrow \) 2849

\(\displaystyle -\frac {b \int \frac {\log \left (\frac {2 (d e-c f+f (c+d x))}{(d e-c f+f) (c+d x+1)}\right )}{1-(c+d x)^2}d(c+d x)}{f}+\frac {b \int \frac {\log \left (\frac {2}{c+d x+1}\right )}{1-\frac {2}{c+d x+1}}d\frac {1}{c+d x+1}}{f}+\frac {(a+b \text {arctanh}(c+d x)) \log \left (\frac {2 (f (c+d x)-c f+d e)}{(c+d x+1) (-c f+d e+f)}\right )}{f}-\frac {\log \left (\frac {2}{c+d x+1}\right ) (a+b \text {arctanh}(c+d x))}{f}\)

\(\Big \downarrow \) 2752

\(\displaystyle -\frac {b \int \frac {\log \left (\frac {2 (d e-c f+f (c+d x))}{(d e-c f+f) (c+d x+1)}\right )}{1-(c+d x)^2}d(c+d x)}{f}+\frac {(a+b \text {arctanh}(c+d x)) \log \left (\frac {2 (f (c+d x)-c f+d e)}{(c+d x+1) (-c f+d e+f)}\right )}{f}-\frac {\log \left (\frac {2}{c+d x+1}\right ) (a+b \text {arctanh}(c+d x))}{f}+\frac {b \operatorname {PolyLog}\left (2,1-\frac {2}{c+d x+1}\right )}{2 f}\)

\(\Big \downarrow \) 2897

\(\displaystyle \frac {(a+b \text {arctanh}(c+d x)) \log \left (\frac {2 (f (c+d x)-c f+d e)}{(c+d x+1) (-c f+d e+f)}\right )}{f}-\frac {\log \left (\frac {2}{c+d x+1}\right ) (a+b \text {arctanh}(c+d x))}{f}-\frac {b \operatorname {PolyLog}\left (2,1-\frac {2 (d e-c f+f (c+d x))}{(d e-c f+f) (c+d x+1)}\right )}{2 f}+\frac {b \operatorname {PolyLog}\left (2,1-\frac {2}{c+d x+1}\right )}{2 f}\)

Input:

Int[(a + b*ArcTanh[c + d*x])/(e + f*x),x]
 

Output:

-(((a + b*ArcTanh[c + d*x])*Log[2/(1 + c + d*x)])/f) + ((a + b*ArcTanh[c + 
 d*x])*Log[(2*(d*e - c*f + f*(c + d*x)))/((d*e + f - c*f)*(1 + c + d*x))]) 
/f + (b*PolyLog[2, 1 - 2/(1 + c + d*x)])/(2*f) - (b*PolyLog[2, 1 - (2*(d*e 
 - c*f + f*(c + d*x)))/((d*e + f - c*f)*(1 + c + d*x))])/(2*f)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2752
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLo 
g[2, 1 - c*x], x] /; FreeQ[{c, d, e}, x] && EqQ[e + c*d, 0]
 

rule 2849
Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Simp 
[-e/g   Subst[Int[Log[2*d*x]/(1 - 2*d*x), x], x, 1/(d + e*x)], x] /; FreeQ[ 
{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]
 

rule 2897
Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/ 
D[u, x])]}, Simp[C*PolyLog[2, 1 - u], x] /; FreeQ[C, x]] /; IntegerQ[m] && 
PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponents[u, 
 x][[2]], Expon[Pq, x]]
 

rule 6472
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> S 
imp[(-(a + b*ArcTanh[c*x]))*(Log[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcTanh 
[c*x])*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b*(c/e) 
Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x], x] - Simp[b*(c/e)   Int[Log[2*c*((d 
 + e*x)/((c*d + e)*(1 + c*x)))]/(1 - c^2*x^2), x], x]) /; FreeQ[{a, b, c, d 
, e}, x] && NeQ[c^2*d^2 - e^2, 0]
 

rule 6661
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IG 
tQ[p, 0]
 
Maple [A] (verified)

Time = 6.21 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.48

method result size
parts \(\frac {a \ln \left (f x +e \right )}{f}+\frac {b \ln \left (f \left (d x +c \right )-c f +d e \right ) \operatorname {arctanh}\left (d x +c \right )}{f}+\frac {b \ln \left (f \left (d x +c \right )-c f +d e \right ) \ln \left (\frac {f \left (d x +c \right )-f}{c f -d e -f}\right )}{2 f}+\frac {b \operatorname {dilog}\left (\frac {f \left (d x +c \right )-f}{c f -d e -f}\right )}{2 f}-\frac {b \ln \left (f \left (d x +c \right )-c f +d e \right ) \ln \left (\frac {f \left (d x +c \right )+f}{c f -d e +f}\right )}{2 f}-\frac {b \operatorname {dilog}\left (\frac {f \left (d x +c \right )+f}{c f -d e +f}\right )}{2 f}\) \(192\)
derivativedivides \(\frac {\frac {a d \ln \left (c f -d e -f \left (d x +c \right )\right )}{f}-b d \left (-\frac {\ln \left (c f -d e -f \left (d x +c \right )\right ) \operatorname {arctanh}\left (d x +c \right )}{f}-\frac {-\frac {f \left (\operatorname {dilog}\left (\frac {-f \left (d x +c \right )-f}{-c f +d e -f}\right )+\ln \left (c f -d e -f \left (d x +c \right )\right ) \ln \left (\frac {-f \left (d x +c \right )-f}{-c f +d e -f}\right )\right )}{2}+\frac {f \left (\operatorname {dilog}\left (\frac {-f \left (d x +c \right )+f}{-c f +d e +f}\right )+\ln \left (c f -d e -f \left (d x +c \right )\right ) \ln \left (\frac {-f \left (d x +c \right )+f}{-c f +d e +f}\right )\right )}{2}}{f^{2}}\right )}{d}\) \(212\)
default \(\frac {\frac {a d \ln \left (c f -d e -f \left (d x +c \right )\right )}{f}-b d \left (-\frac {\ln \left (c f -d e -f \left (d x +c \right )\right ) \operatorname {arctanh}\left (d x +c \right )}{f}-\frac {-\frac {f \left (\operatorname {dilog}\left (\frac {-f \left (d x +c \right )-f}{-c f +d e -f}\right )+\ln \left (c f -d e -f \left (d x +c \right )\right ) \ln \left (\frac {-f \left (d x +c \right )-f}{-c f +d e -f}\right )\right )}{2}+\frac {f \left (\operatorname {dilog}\left (\frac {-f \left (d x +c \right )+f}{-c f +d e +f}\right )+\ln \left (c f -d e -f \left (d x +c \right )\right ) \ln \left (\frac {-f \left (d x +c \right )+f}{-c f +d e +f}\right )\right )}{2}}{f^{2}}\right )}{d}\) \(212\)
risch \(-\frac {b \operatorname {dilog}\left (\frac {\left (-d x -c +1\right ) f +c f -d e -f}{c f -d e -f}\right )}{2 f}-\frac {b \ln \left (-d x -c +1\right ) \ln \left (\frac {\left (-d x -c +1\right ) f +c f -d e -f}{c f -d e -f}\right )}{2 f}+\frac {a \ln \left (\left (-d x -c +1\right ) f +c f -d e -f \right )}{f}+\frac {b \operatorname {dilog}\left (\frac {f \left (d x +c +1\right )-c f +d e -f}{-c f +d e -f}\right )}{2 f}+\frac {b \ln \left (d x +c +1\right ) \ln \left (\frac {f \left (d x +c +1\right )-c f +d e -f}{-c f +d e -f}\right )}{2 f}\) \(213\)

Input:

int((a+b*arctanh(d*x+c))/(f*x+e),x,method=_RETURNVERBOSE)
 

Output:

a*ln(f*x+e)/f+b*ln(f*(d*x+c)-c*f+d*e)/f*arctanh(d*x+c)+1/2*b/f*ln(f*(d*x+c 
)-c*f+d*e)*ln((f*(d*x+c)-f)/(c*f-d*e-f))+1/2*b/f*dilog((f*(d*x+c)-f)/(c*f- 
d*e-f))-1/2*b/f*ln(f*(d*x+c)-c*f+d*e)*ln((f*(d*x+c)+f)/(c*f-d*e+f))-1/2*b/ 
f*dilog((f*(d*x+c)+f)/(c*f-d*e+f))
 

Fricas [F]

\[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\int { \frac {b \operatorname {artanh}\left (d x + c\right ) + a}{f x + e} \,d x } \] Input:

integrate((a+b*arctanh(d*x+c))/(f*x+e),x, algorithm="fricas")
 

Output:

integral((b*arctanh(d*x + c) + a)/(f*x + e), x)
 

Sympy [F]

\[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\int \frac {a + b \operatorname {atanh}{\left (c + d x \right )}}{e + f x}\, dx \] Input:

integrate((a+b*atanh(d*x+c))/(f*x+e),x)
 

Output:

Integral((a + b*atanh(c + d*x))/(e + f*x), x)
 

Maxima [F]

\[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\int { \frac {b \operatorname {artanh}\left (d x + c\right ) + a}{f x + e} \,d x } \] Input:

integrate((a+b*arctanh(d*x+c))/(f*x+e),x, algorithm="maxima")
 

Output:

1/2*b*integrate((log(d*x + c + 1) - log(-d*x - c + 1))/(f*x + e), x) + a*l 
og(f*x + e)/f
 

Giac [F]

\[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\int { \frac {b \operatorname {artanh}\left (d x + c\right ) + a}{f x + e} \,d x } \] Input:

integrate((a+b*arctanh(d*x+c))/(f*x+e),x, algorithm="giac")
 

Output:

integrate((b*arctanh(d*x + c) + a)/(f*x + e), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\int \frac {a+b\,\mathrm {atanh}\left (c+d\,x\right )}{e+f\,x} \,d x \] Input:

int((a + b*atanh(c + d*x))/(e + f*x),x)
 

Output:

int((a + b*atanh(c + d*x))/(e + f*x), x)
 

Reduce [F]

\[ \int \frac {a+b \text {arctanh}(c+d x)}{e+f x} \, dx=\frac {\left (\int \frac {\mathit {atanh} \left (d x +c \right )}{f x +e}d x \right ) b f +\mathrm {log}\left (f x +e \right ) a}{f} \] Input:

int((a+b*atanh(d*x+c))/(f*x+e),x)
 

Output:

(int(atanh(c + d*x)/(e + f*x),x)*b*f + log(e + f*x)*a)/f