\(\int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx\) [46]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 326 \[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\frac {3 b f (a+b \text {arctanh}(c+d x))^2}{2 d^2}+\frac {3 b f (c+d x) (a+b \text {arctanh}(c+d x))^2}{2 d^2}+\frac {(d e-c f) (a+b \text {arctanh}(c+d x))^3}{d^2}-\frac {\left (d^2 e^2-2 c d e f+\left (1+c^2\right ) f^2\right ) (a+b \text {arctanh}(c+d x))^3}{2 d^2 f}+\frac {(e+f x)^2 (a+b \text {arctanh}(c+d x))^3}{2 f}-\frac {3 b^2 f (a+b \text {arctanh}(c+d x)) \log \left (\frac {2}{1-c-d x}\right )}{d^2}-\frac {3 b (d e-c f) (a+b \text {arctanh}(c+d x))^2 \log \left (\frac {2}{1-c-d x}\right )}{d^2}-\frac {3 b^3 f \operatorname {PolyLog}\left (2,-\frac {1+c+d x}{1-c-d x}\right )}{2 d^2}-\frac {3 b^2 (d e-c f) (a+b \text {arctanh}(c+d x)) \operatorname {PolyLog}\left (2,1-\frac {2}{1-c-d x}\right )}{d^2}+\frac {3 b^3 (d e-c f) \operatorname {PolyLog}\left (3,1-\frac {2}{1-c-d x}\right )}{2 d^2} \] Output:

3/2*b*f*(a+b*arctanh(d*x+c))^2/d^2+3/2*b*f*(d*x+c)*(a+b*arctanh(d*x+c))^2/ 
d^2+(-c*f+d*e)*(a+b*arctanh(d*x+c))^3/d^2-1/2*(d^2*e^2-2*c*d*e*f+(c^2+1)*f 
^2)*(a+b*arctanh(d*x+c))^3/d^2/f+1/2*(f*x+e)^2*(a+b*arctanh(d*x+c))^3/f-3* 
b^2*f*(a+b*arctanh(d*x+c))*ln(2/(-d*x-c+1))/d^2-3*b*(-c*f+d*e)*(a+b*arctan 
h(d*x+c))^2*ln(2/(-d*x-c+1))/d^2-3/2*b^3*f*polylog(2,-(d*x+c+1)/(-d*x-c+1) 
)/d^2-3*b^2*(-c*f+d*e)*(a+b*arctanh(d*x+c))*polylog(2,1-2/(-d*x-c+1))/d^2+ 
3/2*b^3*(-c*f+d*e)*polylog(3,1-2/(-d*x-c+1))/d^2
 

Mathematica [A] (verified)

Time = 3.19 (sec) , antiderivative size = 566, normalized size of antiderivative = 1.74 \[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\frac {2 a^2 (2 a d e+3 b f-2 a c f) (c+d x)+2 a^3 f (c+d x)^2-6 a^2 b (c+d x) (c f-d (2 e+f x)) \text {arctanh}(c+d x)+3 a^2 b (2 d e+f-2 c f) \log (1-c-d x)+3 a^2 b (2 d e-(1+2 c) f) \log (1+c+d x)+12 a b^2 f \left ((c+d x) \text {arctanh}(c+d x)-\frac {1}{2} \left (1-(c+d x)^2\right ) \text {arctanh}(c+d x)^2-\log \left (\frac {1}{\sqrt {1-(c+d x)^2}}\right )\right )+12 a b^2 d e \left (\text {arctanh}(c+d x) \left ((-1+c+d x) \text {arctanh}(c+d x)-2 \log \left (1+e^{-2 \text {arctanh}(c+d x)}\right )\right )+\operatorname {PolyLog}\left (2,-e^{-2 \text {arctanh}(c+d x)}\right )\right )-12 a b^2 c f \left (\text {arctanh}(c+d x) \left ((-1+c+d x) \text {arctanh}(c+d x)-2 \log \left (1+e^{-2 \text {arctanh}(c+d x)}\right )\right )+\operatorname {PolyLog}\left (2,-e^{-2 \text {arctanh}(c+d x)}\right )\right )+2 b^3 f \left (\text {arctanh}(c+d x) \left (3 (-1+c+d x) \text {arctanh}(c+d x)+\left (-1+c^2+2 c d x+d^2 x^2\right ) \text {arctanh}(c+d x)^2-6 \log \left (1+e^{-2 \text {arctanh}(c+d x)}\right )\right )+3 \operatorname {PolyLog}\left (2,-e^{-2 \text {arctanh}(c+d x)}\right )\right )+4 b^3 d e \left (\text {arctanh}(c+d x)^2 \left ((-1+c+d x) \text {arctanh}(c+d x)-3 \log \left (1+e^{-2 \text {arctanh}(c+d x)}\right )\right )+3 \text {arctanh}(c+d x) \operatorname {PolyLog}\left (2,-e^{-2 \text {arctanh}(c+d x)}\right )+\frac {3}{2} \operatorname {PolyLog}\left (3,-e^{-2 \text {arctanh}(c+d x)}\right )\right )-4 b^3 c f \left (\text {arctanh}(c+d x)^2 \left ((-1+c+d x) \text {arctanh}(c+d x)-3 \log \left (1+e^{-2 \text {arctanh}(c+d x)}\right )\right )+3 \text {arctanh}(c+d x) \operatorname {PolyLog}\left (2,-e^{-2 \text {arctanh}(c+d x)}\right )+\frac {3}{2} \operatorname {PolyLog}\left (3,-e^{-2 \text {arctanh}(c+d x)}\right )\right )}{4 d^2} \] Input:

Integrate[(e + f*x)*(a + b*ArcTanh[c + d*x])^3,x]
 

Output:

(2*a^2*(2*a*d*e + 3*b*f - 2*a*c*f)*(c + d*x) + 2*a^3*f*(c + d*x)^2 - 6*a^2 
*b*(c + d*x)*(c*f - d*(2*e + f*x))*ArcTanh[c + d*x] + 3*a^2*b*(2*d*e + f - 
 2*c*f)*Log[1 - c - d*x] + 3*a^2*b*(2*d*e - (1 + 2*c)*f)*Log[1 + c + d*x] 
+ 12*a*b^2*f*((c + d*x)*ArcTanh[c + d*x] - ((1 - (c + d*x)^2)*ArcTanh[c + 
d*x]^2)/2 - Log[1/Sqrt[1 - (c + d*x)^2]]) + 12*a*b^2*d*e*(ArcTanh[c + d*x] 
*((-1 + c + d*x)*ArcTanh[c + d*x] - 2*Log[1 + E^(-2*ArcTanh[c + d*x])]) + 
PolyLog[2, -E^(-2*ArcTanh[c + d*x])]) - 12*a*b^2*c*f*(ArcTanh[c + d*x]*((- 
1 + c + d*x)*ArcTanh[c + d*x] - 2*Log[1 + E^(-2*ArcTanh[c + d*x])]) + Poly 
Log[2, -E^(-2*ArcTanh[c + d*x])]) + 2*b^3*f*(ArcTanh[c + d*x]*(3*(-1 + c + 
 d*x)*ArcTanh[c + d*x] + (-1 + c^2 + 2*c*d*x + d^2*x^2)*ArcTanh[c + d*x]^2 
 - 6*Log[1 + E^(-2*ArcTanh[c + d*x])]) + 3*PolyLog[2, -E^(-2*ArcTanh[c + d 
*x])]) + 4*b^3*d*e*(ArcTanh[c + d*x]^2*((-1 + c + d*x)*ArcTanh[c + d*x] - 
3*Log[1 + E^(-2*ArcTanh[c + d*x])]) + 3*ArcTanh[c + d*x]*PolyLog[2, -E^(-2 
*ArcTanh[c + d*x])] + (3*PolyLog[3, -E^(-2*ArcTanh[c + d*x])])/2) - 4*b^3* 
c*f*(ArcTanh[c + d*x]^2*((-1 + c + d*x)*ArcTanh[c + d*x] - 3*Log[1 + E^(-2 
*ArcTanh[c + d*x])]) + 3*ArcTanh[c + d*x]*PolyLog[2, -E^(-2*ArcTanh[c + d* 
x])] + (3*PolyLog[3, -E^(-2*ArcTanh[c + d*x])])/2))/(4*d^2)
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 324, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6661, 27, 6480, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx\)

\(\Big \downarrow \) 6661

\(\displaystyle \frac {\int \frac {\left (d \left (e-\frac {c f}{d}\right )+f (c+d x)\right ) (a+b \text {arctanh}(c+d x))^3}{d}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (d e-c f+f (c+d x)) (a+b \text {arctanh}(c+d x))^3d(c+d x)}{d^2}\)

\(\Big \downarrow \) 6480

\(\displaystyle \frac {\frac {(f (c+d x)-c f+d e)^2 (a+b \text {arctanh}(c+d x))^3}{2 f}-\frac {3 b \int \left (\frac {\left (d^2 e^2-2 c d f e+\left (c^2+1\right ) f^2+2 f (d e-c f) (c+d x)\right ) (a+b \text {arctanh}(c+d x))^2}{1-(c+d x)^2}-f^2 (a+b \text {arctanh}(c+d x))^2\right )d(c+d x)}{2 f}}{d^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {(f (c+d x)-c f+d e)^2 (a+b \text {arctanh}(c+d x))^3}{2 f}-\frac {3 b \left (\frac {\left (\left (c^2+1\right ) f^2-2 c d e f+d^2 e^2\right ) (a+b \text {arctanh}(c+d x))^3}{3 b}+2 b f (d e-c f) \operatorname {PolyLog}\left (2,1-\frac {2}{-c-d x+1}\right ) (a+b \text {arctanh}(c+d x))-\frac {2 f (d e-c f) (a+b \text {arctanh}(c+d x))^3}{3 b}+2 f (d e-c f) \log \left (\frac {2}{-c-d x+1}\right ) (a+b \text {arctanh}(c+d x))^2-f^2 (a+b \text {arctanh}(c+d x))^2-f^2 (c+d x) (a+b \text {arctanh}(c+d x))^2+2 b f^2 \log \left (\frac {2}{-c-d x+1}\right ) (a+b \text {arctanh}(c+d x))-b^2 f (d e-c f) \operatorname {PolyLog}\left (3,1-\frac {2}{-c-d x+1}\right )+b^2 f^2 \operatorname {PolyLog}\left (2,-\frac {c+d x+1}{-c-d x+1}\right )\right )}{2 f}}{d^2}\)

Input:

Int[(e + f*x)*(a + b*ArcTanh[c + d*x])^3,x]
 

Output:

(((d*e - c*f + f*(c + d*x))^2*(a + b*ArcTanh[c + d*x])^3)/(2*f) - (3*b*(-( 
f^2*(a + b*ArcTanh[c + d*x])^2) - f^2*(c + d*x)*(a + b*ArcTanh[c + d*x])^2 
 - (2*f*(d*e - c*f)*(a + b*ArcTanh[c + d*x])^3)/(3*b) + ((d^2*e^2 - 2*c*d* 
e*f + (1 + c^2)*f^2)*(a + b*ArcTanh[c + d*x])^3)/(3*b) + 2*b*f^2*(a + b*Ar 
cTanh[c + d*x])*Log[2/(1 - c - d*x)] + 2*f*(d*e - c*f)*(a + b*ArcTanh[c + 
d*x])^2*Log[2/(1 - c - d*x)] + b^2*f^2*PolyLog[2, -((1 + c + d*x)/(1 - c - 
 d*x))] + 2*b*f*(d*e - c*f)*(a + b*ArcTanh[c + d*x])*PolyLog[2, 1 - 2/(1 - 
 c - d*x)] - b^2*f*(d*e - c*f)*PolyLog[3, 1 - 2/(1 - c - d*x)]))/(2*f))/d^ 
2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6480
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_S 
ymbol] :> Simp[(d + e*x)^(q + 1)*((a + b*ArcTanh[c*x])^p/(e*(q + 1))), x] - 
 Simp[b*c*(p/(e*(q + 1)))   Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^(p - 1 
), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] 
 && IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1]
 

rule 6661
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IG 
tQ[p, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 5.99 (sec) , antiderivative size = 10425, normalized size of antiderivative = 31.98

method result size
parts \(\text {Expression too large to display}\) \(10425\)
derivativedivides \(\text {Expression too large to display}\) \(10431\)
default \(\text {Expression too large to display}\) \(10431\)

Input:

int((f*x+e)*(a+b*arctanh(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

result too large to display
 

Fricas [F]

\[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\int { {\left (f x + e\right )} {\left (b \operatorname {artanh}\left (d x + c\right ) + a\right )}^{3} \,d x } \] Input:

integrate((f*x+e)*(a+b*arctanh(d*x+c))^3,x, algorithm="fricas")
 

Output:

integral(a^3*f*x + a^3*e + (b^3*f*x + b^3*e)*arctanh(d*x + c)^3 + 3*(a*b^2 
*f*x + a*b^2*e)*arctanh(d*x + c)^2 + 3*(a^2*b*f*x + a^2*b*e)*arctanh(d*x + 
 c), x)
 

Sympy [F]

\[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\int \left (a + b \operatorname {atanh}{\left (c + d x \right )}\right )^{3} \left (e + f x\right )\, dx \] Input:

integrate((f*x+e)*(a+b*atanh(d*x+c))**3,x)
 

Output:

Integral((a + b*atanh(c + d*x))**3*(e + f*x), x)
 

Maxima [F]

\[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\int { {\left (f x + e\right )} {\left (b \operatorname {artanh}\left (d x + c\right ) + a\right )}^{3} \,d x } \] Input:

integrate((f*x+e)*(a+b*arctanh(d*x+c))^3,x, algorithm="maxima")
 

Output:

1/2*a^3*f*x^2 + 3/4*(2*x^2*arctanh(d*x + c) + d*(2*x/d^2 - (c^2 + 2*c + 1) 
*log(d*x + c + 1)/d^3 + (c^2 - 2*c + 1)*log(d*x + c - 1)/d^3))*a^2*b*f + a 
^3*e*x + 3/2*(2*(d*x + c)*arctanh(d*x + c) + log(-(d*x + c)^2 + 1))*a^2*b* 
e/d - 1/16*((b^3*d^2*f*x^2 + 2*b^3*d^2*e*x - (c^2*f - 2*(d*e + f)*c + 2*d* 
e + f)*b^3)*log(-d*x - c + 1)^3 - 3*(2*a*b^2*d^2*f*x^2 + 2*(2*a*b^2*d^2*e 
+ b^3*d*f)*x + (b^3*d^2*f*x^2 + 2*b^3*d^2*e*x - (c^2*f - 2*(d*e - f)*c - 2 
*d*e + f)*b^3)*log(d*x + c + 1))*log(-d*x - c + 1)^2)/d^2 - integrate(-1/8 
*((b^3*d^2*f*x^2 + (d^2*e + c*d*f - d*f)*b^3*x + (c*d*e - d*e)*b^3)*log(d* 
x + c + 1)^3 + 6*(a*b^2*d^2*f*x^2 + (d^2*e + c*d*f - d*f)*a*b^2*x + (c*d*e 
 - d*e)*a*b^2)*log(d*x + c + 1)^2 - 3*(2*a*b^2*d^2*f*x^2 + (b^3*d^2*f*x^2 
+ (d^2*e + c*d*f - d*f)*b^3*x + (c*d*e - d*e)*b^3)*log(d*x + c + 1)^2 + 2* 
(2*a*b^2*d^2*e + b^3*d*f)*x + (4*(c*d*e - d*e)*a*b^2 - (c^2*f - 2*(d*e - f 
)*c - 2*d*e + f)*b^3 + (4*a*b^2*d^2*f + b^3*d^2*f)*x^2 + 2*(b^3*d^2*e + 2* 
(d^2*e + c*d*f - d*f)*a*b^2)*x)*log(d*x + c + 1))*log(-d*x - c + 1))/(d^2* 
x + c*d - d), x)
 

Giac [F]

\[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\int { {\left (f x + e\right )} {\left (b \operatorname {artanh}\left (d x + c\right ) + a\right )}^{3} \,d x } \] Input:

integrate((f*x+e)*(a+b*arctanh(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate((f*x + e)*(b*arctanh(d*x + c) + a)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\int \left (e+f\,x\right )\,{\left (a+b\,\mathrm {atanh}\left (c+d\,x\right )\right )}^3 \,d x \] Input:

int((e + f*x)*(a + b*atanh(c + d*x))^3,x)
 

Output:

int((e + f*x)*(a + b*atanh(c + d*x))^3, x)
 

Reduce [F]

\[ \int (e+f x) (a+b \text {arctanh}(c+d x))^3 \, dx=\frac {\mathit {atanh} \left (d x +c \right )^{3} b^{3} c^{2} f -\mathit {atanh} \left (d x +c \right )^{3} b^{3} f +a^{3} d^{2} f \,x^{2}-3 \mathit {atanh} \left (d x +c \right )^{2} a \,b^{2} f -3 \mathit {atanh} \left (d x +c \right ) a^{2} b f +6 \mathit {atanh} \left (d x +c \right ) a \,b^{2} f +6 \,\mathrm {log}\left (d x +c -1\right ) a \,b^{2} f +2 a^{3} d^{2} e x +6 \left (\int \frac {\mathit {atanh} \left (d x +c \right ) x}{d^{2} x^{2}+2 c d x +c^{2}-1}d x \right ) b^{3} d^{2} f +6 \left (\int \frac {\mathit {atanh} \left (d x +c \right )^{2} x}{d^{2} x^{2}+2 c d x +c^{2}-1}d x \right ) b^{3} d^{3} e +12 \left (\int \frac {\mathit {atanh} \left (d x +c \right ) x}{d^{2} x^{2}+2 c d x +c^{2}-1}d x \right ) a \,b^{2} d^{3} e -6 \left (\int \frac {\mathit {atanh} \left (d x +c \right )^{2} x}{d^{2} x^{2}+2 c d x +c^{2}-1}d x \right ) b^{3} c \,d^{2} f +\mathit {atanh} \left (d x +c \right )^{3} b^{3} d^{2} f \,x^{2}+2 \mathit {atanh} \left (d x +c \right )^{3} b^{3} d^{2} e x +3 \mathit {atanh} \left (d x +c \right )^{2} a \,b^{2} c^{2} f +3 \mathit {atanh} \left (d x +c \right )^{2} b^{3} d f x -3 \mathit {atanh} \left (d x +c \right ) a^{2} b \,c^{2} f -6 \mathit {atanh} \left (d x +c \right ) a^{2} b c f +6 \mathit {atanh} \left (d x +c \right ) a^{2} b d e +6 \mathit {atanh} \left (d x +c \right ) a \,b^{2} c f -6 \,\mathrm {log}\left (d x +c -1\right ) a^{2} b c f +6 \,\mathrm {log}\left (d x +c -1\right ) a^{2} b d e +3 a^{2} b d f x +6 \mathit {atanh} \left (d x +c \right )^{2} a \,b^{2} d^{2} e x +3 \mathit {atanh} \left (d x +c \right )^{2} a \,b^{2} d^{2} f \,x^{2}+6 \mathit {atanh} \left (d x +c \right ) a^{2} b c d e +6 \mathit {atanh} \left (d x +c \right ) a^{2} b \,d^{2} e x +3 \mathit {atanh} \left (d x +c \right ) a^{2} b \,d^{2} f \,x^{2}+6 \mathit {atanh} \left (d x +c \right ) a \,b^{2} d f x -12 \left (\int \frac {\mathit {atanh} \left (d x +c \right ) x}{d^{2} x^{2}+2 c d x +c^{2}-1}d x \right ) a \,b^{2} c \,d^{2} f}{2 d^{2}} \] Input:

int((f*x+e)*(a+b*atanh(d*x+c))^3,x)
                                                                                    
                                                                                    
 

Output:

(atanh(c + d*x)**3*b**3*c**2*f + 2*atanh(c + d*x)**3*b**3*d**2*e*x + atanh 
(c + d*x)**3*b**3*d**2*f*x**2 - atanh(c + d*x)**3*b**3*f + 3*atanh(c + d*x 
)**2*a*b**2*c**2*f + 6*atanh(c + d*x)**2*a*b**2*d**2*e*x + 3*atanh(c + d*x 
)**2*a*b**2*d**2*f*x**2 - 3*atanh(c + d*x)**2*a*b**2*f + 3*atanh(c + d*x)* 
*2*b**3*d*f*x - 3*atanh(c + d*x)*a**2*b*c**2*f + 6*atanh(c + d*x)*a**2*b*c 
*d*e - 6*atanh(c + d*x)*a**2*b*c*f + 6*atanh(c + d*x)*a**2*b*d**2*e*x + 3* 
atanh(c + d*x)*a**2*b*d**2*f*x**2 + 6*atanh(c + d*x)*a**2*b*d*e - 3*atanh( 
c + d*x)*a**2*b*f + 6*atanh(c + d*x)*a*b**2*c*f + 6*atanh(c + d*x)*a*b**2* 
d*f*x + 6*atanh(c + d*x)*a*b**2*f - 12*int((atanh(c + d*x)*x)/(c**2 + 2*c* 
d*x + d**2*x**2 - 1),x)*a*b**2*c*d**2*f + 12*int((atanh(c + d*x)*x)/(c**2 
+ 2*c*d*x + d**2*x**2 - 1),x)*a*b**2*d**3*e + 6*int((atanh(c + d*x)*x)/(c* 
*2 + 2*c*d*x + d**2*x**2 - 1),x)*b**3*d**2*f - 6*int((atanh(c + d*x)**2*x) 
/(c**2 + 2*c*d*x + d**2*x**2 - 1),x)*b**3*c*d**2*f + 6*int((atanh(c + d*x) 
**2*x)/(c**2 + 2*c*d*x + d**2*x**2 - 1),x)*b**3*d**3*e - 6*log(c + d*x - 1 
)*a**2*b*c*f + 6*log(c + d*x - 1)*a**2*b*d*e + 6*log(c + d*x - 1)*a*b**2*f 
 + 2*a**3*d**2*e*x + a**3*d**2*f*x**2 + 3*a**2*b*d*f*x)/(2*d**2)