\(\int \frac {x^5 (a+b \text {csch}^{-1}(c x))}{(d+e x^2)^2} \, dx\) [104]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 571 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\frac {b \sqrt {1+\frac {1}{c^2 x^2}} x}{2 c e^2}+\frac {d \left (a+b \text {csch}^{-1}(c x)\right )}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {x^2 \left (a+b \text {csch}^{-1}(c x)\right )}{2 e^2}-\frac {b d \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 \sqrt {c^2 d-e} e^{5/2}}-\frac {d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{e^3}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-e^{2 \text {csch}^{-1}(c x)}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{e^3}+\frac {b d \operatorname {PolyLog}\left (2,e^{2 \text {csch}^{-1}(c x)}\right )}{e^3} \] Output:

1/2*b*(1+1/c^2/x^2)^(1/2)*x/c/e^2+1/2*d*(a+b*arccsch(c*x))/e^2/(e+d/x^2)+1 
/2*x^2*(a+b*arccsch(c*x))/e^2-1/2*b*d*arctan((c^2*d-e)^(1/2)/c/e^(1/2)/(1+ 
1/c^2/x^2)^(1/2)/x)/(c^2*d-e)^(1/2)/e^(5/2)-d*(a+b*arccsch(c*x))*ln(1-c*(- 
d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c^2*d+e)^(1/2)))/e^3-d*(a+ 
b*arccsch(c*x))*ln(1+c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c 
^2*d+e)^(1/2)))/e^3-d*(a+b*arccsch(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+(1+1/c^2 
/x^2)^(1/2))/(e^(1/2)+(-c^2*d+e)^(1/2)))/e^3-d*(a+b*arccsch(c*x))*ln(1+c*( 
-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)+(-c^2*d+e)^(1/2)))/e^3+2*d* 
(a+b*arccsch(c*x))*ln(1-(1/c/x+(1+1/c^2/x^2)^(1/2))^2)/e^3-b*d*polylog(2,- 
c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c^2*d+e)^(1/2)))/e^3-b 
*d*polylog(2,c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c^2*d+e)^ 
(1/2)))/e^3-b*d*polylog(2,-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/ 
2)+(-c^2*d+e)^(1/2)))/e^3-b*d*polylog(2,c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^ 
(1/2))/(e^(1/2)+(-c^2*d+e)^(1/2)))/e^3+b*d*polylog(2,(1/c/x+(1+1/c^2/x^2)^ 
(1/2))^2)/e^3
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 4.00 (sec) , antiderivative size = 1447, normalized size of antiderivative = 2.53 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \] Input:

Integrate[(x^5*(a + b*ArcCsch[c*x]))/(d + e*x^2)^2,x]
 

Output:

-1/4*(-2*a*e*x^2 + (2*a*d^2)/(d + e*x^2) + 4*a*d*Log[d + e*x^2] + b*(d*Pi^ 
2 - (2*e*Sqrt[1 + 1/(c^2*x^2)]*x)/c - (4*I)*d*Pi*ArcCsch[c*x] - 2*e*x^2*Ar 
cCsch[c*x] + (d^(3/2)*ArcCsch[c*x])/(Sqrt[d] - I*Sqrt[e]*x) + (d^(3/2)*Arc 
Csch[c*x])/(Sqrt[d] + I*Sqrt[e]*x) - 8*d*ArcCsch[c*x]^2 - 2*d*ArcSinh[1/(c 
*x)] + 16*d*ArcSin[Sqrt[1 + Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((c*Sqrt[ 
d] - Sqrt[e])*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[-(c^2*d) + e]] - 16*d 
*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((c*Sqrt[d] + Sqrt[e 
])*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[-(c^2*d) + e]] - 8*d*ArcCsch[c*x 
]*Log[1 - E^(-2*ArcCsch[c*x])] + (2*I)*d*Pi*Log[1 - (I*(-Sqrt[e] + Sqrt[-( 
c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 4*d*ArcCsch[c*x]*Log[1 - (I*(- 
Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (8*I)*d*ArcSi 
n[Sqrt[1 + Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(-Sqrt[e] + Sqrt[-(c^2 
*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (2*I)*d*Pi*Log[1 + (I*(-Sqrt[e] + 
 Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 4*d*ArcCsch[c*x]*Log[1 
 + (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (8*I) 
*d*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sq 
rt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (2*I)*d*Pi*Log[1 - (I*(Sq 
rt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 4*d*ArcCsch[c*x 
]*Log[1 - (I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] - 
 (8*I)*d*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt...
 

Rubi [A] (verified)

Time = 1.81 (sec) , antiderivative size = 663, normalized size of antiderivative = 1.16, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6858, 6238, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6858

\(\displaystyle -\int \frac {x^3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 6238

\(\displaystyle -\int \left (\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) x^3}{e^2}-\frac {2 d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) x}{e^3}+\frac {2 d^2 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^3 \left (\frac {d}{x^2}+e\right ) x}+\frac {d^2 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right )^2 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{e^3}-\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{e^3}-\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{e^3}-\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{e^3}+\frac {2 d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )^2}{b e^3}+\frac {2 d \log \left (1-e^{-2 \text {arcsinh}\left (\frac {1}{c x}\right )}\right ) \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^3}+\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{2 e^2 \left (\frac {d}{x^2}+e\right )}+\frac {x^2 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{2 e^2}-\frac {b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{e^3}-\frac {b d \operatorname {PolyLog}\left (2,e^{-2 \text {arcsinh}\left (\frac {1}{c x}\right )}\right )}{e^3}-\frac {b d \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} x \sqrt {\frac {1}{c^2 x^2}+1}}\right )}{2 e^{5/2} \sqrt {c^2 d-e}}+\frac {b x \sqrt {\frac {1}{c^2 x^2}+1}}{2 c e^2}\)

Input:

Int[(x^5*(a + b*ArcCsch[c*x]))/(d + e*x^2)^2,x]
 

Output:

(b*Sqrt[1 + 1/(c^2*x^2)]*x)/(2*c*e^2) + (d*(a + b*ArcSinh[1/(c*x)]))/(2*e^ 
2*(e + d/x^2)) + (x^2*(a + b*ArcSinh[1/(c*x)]))/(2*e^2) + (2*d*(a + b*ArcS 
inh[1/(c*x)])^2)/(b*e^3) - (b*d*ArcTan[Sqrt[c^2*d - e]/(c*Sqrt[e]*Sqrt[1 + 
 1/(c^2*x^2)]*x)])/(2*Sqrt[c^2*d - e]*e^(5/2)) + (2*d*(a + b*ArcSinh[1/(c* 
x)])*Log[1 - E^(-2*ArcSinh[1/(c*x)])])/e^3 - (d*(a + b*ArcSinh[1/(c*x)])*L 
og[1 - (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/e^ 
3 - (d*(a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(S 
qrt[e] - Sqrt[-(c^2*d) + e])])/e^3 - (d*(a + b*ArcSinh[1/(c*x)])*Log[1 - ( 
c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/e^3 - (d*( 
a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + 
 Sqrt[-(c^2*d) + e])])/e^3 - (b*d*PolyLog[2, E^(-2*ArcSinh[1/(c*x)])])/e^3 
 - (b*d*PolyLog[2, -((c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2 
*d) + e]))])/e^3 - (b*d*PolyLog[2, (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e 
] - Sqrt[-(c^2*d) + e])])/e^3 - (b*d*PolyLog[2, -((c*Sqrt[-d]*E^ArcSinh[1/ 
(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e]))])/e^3 - (b*d*PolyLog[2, (c*Sqrt[-d 
]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/e^3
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6238
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[e, c^ 
2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6858
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
Maple [F]

\[\int \frac {x^{5} \left (a +b \,\operatorname {arccsch}\left (c x \right )\right )}{\left (x^{2} e +d \right )^{2}}d x\]

Input:

int(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^2,x)
 

Output:

int(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^2,x)
 

Fricas [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \] Input:

integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 

Output:

integral((b*x^5*arccsch(c*x) + a*x^5)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \] Input:

integrate(x**5*(a+b*acsch(c*x))/(e*x**2+d)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \] Input:

integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 

Output:

-1/2*a*(d^2/(e^4*x^2 + d*e^3) - x^2/e^2 + 2*d*log(e*x^2 + d)/e^3) + b*inte 
grate(x^5*log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/(e^2*x^4 + 2*d*e*x^2 + d^2) 
, x)
 

Giac [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \] Input:

integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 

Output:

integrate((b*arccsch(c*x) + a)*x^5/(e*x^2 + d)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \] Input:

int((x^5*(a + b*asinh(1/(c*x))))/(d + e*x^2)^2,x)
 

Output:

int((x^5*(a + b*asinh(1/(c*x))))/(d + e*x^2)^2, x)
 

Reduce [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\frac {2 \left (\int \frac {\mathit {acsch} \left (c x \right ) x^{5}}{e^{2} x^{4}+2 d e \,x^{2}+d^{2}}d x \right ) b d \,e^{3}+2 \left (\int \frac {\mathit {acsch} \left (c x \right ) x^{5}}{e^{2} x^{4}+2 d e \,x^{2}+d^{2}}d x \right ) b \,e^{4} x^{2}-2 \,\mathrm {log}\left (e \,x^{2}+d \right ) a \,d^{2}-2 \,\mathrm {log}\left (e \,x^{2}+d \right ) a d e \,x^{2}+2 a d e \,x^{2}+a \,e^{2} x^{4}}{2 e^{3} \left (e \,x^{2}+d \right )} \] Input:

int(x^5*(a+b*acsch(c*x))/(e*x^2+d)^2,x)
 

Output:

(2*int((acsch(c*x)*x**5)/(d**2 + 2*d*e*x**2 + e**2*x**4),x)*b*d*e**3 + 2*i 
nt((acsch(c*x)*x**5)/(d**2 + 2*d*e*x**2 + e**2*x**4),x)*b*e**4*x**2 - 2*lo 
g(d + e*x**2)*a*d**2 - 2*log(d + e*x**2)*a*d*e*x**2 + 2*a*d*e*x**2 + a*e** 
2*x**4)/(2*e**3*(d + e*x**2))