\(\int \frac {x^4 (a+b \text {csch}^{-1}(c x))}{(d+e x^2)^3} \, dx\) [116]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 1106 \[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx =\text {Too large to display} \] Output:

-1/16*b*c*(-d)^(1/2)*(1+1/c^2/x^2)^(1/2)/(c^2*d-e)/e^(3/2)/((-d)^(1/2)*e^( 
1/2)-d/x)-1/16*b*c*(-d)^(1/2)*(1+1/c^2/x^2)^(1/2)/(c^2*d-e)/e^(3/2)/((-d)^ 
(1/2)*e^(1/2)+d/x)+1/16*(-d)^(1/2)*(a+b*arccsch(c*x))/e^(3/2)/((-d)^(1/2)* 
e^(1/2)-d/x)^2+3/16*(a+b*arccsch(c*x))/e^2/((-d)^(1/2)*e^(1/2)-d/x)-1/16*( 
-d)^(1/2)*(a+b*arccsch(c*x))/e^(3/2)/((-d)^(1/2)*e^(1/2)+d/x)^2-3/16*(a+b* 
arccsch(c*x))/e^2/((-d)^(1/2)*e^(1/2)+d/x)-3/16*b*arctanh((c^2*d-(-d)^(1/2 
)*e^(1/2)/x)/c/d^(1/2)/(c^2*d-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(1/2)/(c^2*d 
-e)^(1/2)/e^2+1/16*b*arctanh((c^2*d-(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d 
-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(1/2)/(c^2*d-e)^(3/2)/e-3/16*b*arctanh((c 
^2*d+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/ 
d^(1/2)/(c^2*d-e)^(1/2)/e^2+1/16*b*arctanh((c^2*d+(-d)^(1/2)*e^(1/2)/x)/c/ 
d^(1/2)/(c^2*d-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(1/2)/(c^2*d-e)^(3/2)/e+3/1 
6*(a+b*arccsch(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2 
)-(-c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(5/2)-3/16*(a+b*arccsch(c*x))*ln(1+c*(-d 
)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c^2*d+e)^(1/2)))/(-d)^(1/2) 
/e^(5/2)+3/16*(a+b*arccsch(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1 
/2))/(e^(1/2)+(-c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(5/2)-3/16*(a+b*arccsch(c*x) 
)*ln(1+c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)+(-c^2*d+e)^(1/2)) 
)/(-d)^(1/2)/e^(5/2)-3/16*b*polylog(2,-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^( 
1/2))/(e^(1/2)-(-c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(5/2)+3/16*b*polylog(2,c...
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.07 (sec) , antiderivative size = 2045, normalized size of antiderivative = 1.85 \[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Result too large to show} \] Input:

Integrate[(x^4*(a + b*ArcCsch[c*x]))/(d + e*x^2)^3,x]
 

Output:

(a*d*x)/(4*e^2*(d + e*x^2)^2) - (5*a*x)/(8*e^2*(d + e*x^2)) + (3*a*ArcTan[ 
(Sqrt[e]*x)/Sqrt[d]])/(8*Sqrt[d]*e^(5/2)) + b*(((I/16)*Sqrt[d]*((I*c*Sqrt[ 
e]*Sqrt[1 + 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d - e)*((-I)*Sqrt[d] + Sqrt[e]*x 
)) - ArcCsch[c*x]/(Sqrt[e]*((-I)*Sqrt[d] + Sqrt[e]*x)^2) - ArcSinh[1/(c*x) 
]/(d*Sqrt[e]) + (I*(2*c^2*d - e)*Log[(4*d*Sqrt[c^2*d - e]*Sqrt[e]*(Sqrt[e] 
 + I*c*(c*Sqrt[d] - Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])*x))/((2*c^2*d - 
 e)*(Sqrt[d] + I*Sqrt[e]*x))])/(d*(c^2*d - e)^(3/2))))/e^2 - ((I/16)*Sqrt[ 
d]*(((-I)*c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d - e)*(I*Sqrt[ 
d] + Sqrt[e]*x)) - ArcCsch[c*x]/(Sqrt[e]*(I*Sqrt[d] + Sqrt[e]*x)^2) - ArcS 
inh[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d - e)*Log[((4*I)*d*Sqrt[c^2*d - e]*S 
qrt[e]*(I*Sqrt[e] + c*(c*Sqrt[d] + Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])* 
x))/((2*c^2*d - e)*(Sqrt[d] - I*Sqrt[e]*x))])/(d*(c^2*d - e)^(3/2))))/e^2 
+ (5*(-(ArcCsch[c*x]/(I*Sqrt[d]*Sqrt[e] + e*x)) - (I*(ArcSinh[1/(c*x)]/Sqr 
t[e] - Log[(2*Sqrt[d]*Sqrt[e]*(I*Sqrt[e] + c*(c*Sqrt[d] + I*Sqrt[-(c^2*d) 
+ e]*Sqrt[1 + 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) + e]*(I*Sqrt[d] + Sqrt[e]*x 
))]/Sqrt[-(c^2*d) + e]))/Sqrt[d]))/(16*e^2) + (5*(-(ArcCsch[c*x]/((-I)*Sqr 
t[d]*Sqrt[e] + e*x)) + (I*(ArcSinh[1/(c*x)]/Sqrt[e] - Log[(-2*Sqrt[d]*Sqrt 
[e]*(Sqrt[e] + c*(I*c*Sqrt[d] + Sqrt[-(c^2*d) + e]*Sqrt[1 + 1/(c^2*x^2)])* 
x))/(Sqrt[-(c^2*d) + e]*(Sqrt[d] + I*Sqrt[e]*x))]/Sqrt[-(c^2*d) + e]))/Sqr 
t[d]))/(16*e^2) + (((3*I)/128)*(Pi^2 - (4*I)*Pi*ArcCsch[c*x] - 8*ArcCsc...
 

Rubi [A] (verified)

Time = 2.13 (sec) , antiderivative size = 1170, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6858, 6208, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 6858

\(\displaystyle -\int \frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^3}d\frac {1}{x}\)

\(\Big \downarrow \) 6208

\(\displaystyle -\int \left (-\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) d^3}{8 (-d)^{3/2} e^{3/2} \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^3}-\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) d^3}{8 (-d)^{3/2} e^{3/2} \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^3}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) d}{8 e^2 \left (-\frac {d^2}{x^2}-e d\right )}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) d}{16 e^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^2}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) d}{16 e^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^2}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {b \sqrt {-d} \sqrt {1+\frac {1}{c^2 x^2}} c}{16 \left (c^2 d-e\right ) e^{3/2} \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {b \sqrt {-d} \sqrt {1+\frac {1}{c^2 x^2}} c}{16 \left (c^2 d-e\right ) e^{3/2} \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 e^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 e^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {\sqrt {-d} \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 e^{3/2} \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^2}-\frac {\sqrt {-d} \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 e^{3/2} \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^2}+\frac {b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 \sqrt {d} \left (c^2 d-e\right )^{3/2} e}-\frac {3 b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 \sqrt {d} \sqrt {c^2 d-e} e^2}+\frac {b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 \sqrt {d} \left (c^2 d-e\right )^{3/2} e}-\frac {3 b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 \sqrt {d} \sqrt {c^2 d-e} e^2}+\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{16 \sqrt {-d} e^{5/2}}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{16 \sqrt {-d} e^{5/2}}+\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{16 \sqrt {-d} e^{5/2}}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {e-c^2 d}}+1\right )}{16 \sqrt {-d} e^{5/2}}-\frac {3 b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{16 \sqrt {-d} e^{5/2}}+\frac {3 b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{16 \sqrt {-d} e^{5/2}}-\frac {3 b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{16 \sqrt {-d} e^{5/2}}+\frac {3 b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{16 \sqrt {-d} e^{5/2}}\)

Input:

Int[(x^4*(a + b*ArcCsch[c*x]))/(d + e*x^2)^3,x]
 

Output:

-1/16*(b*c*Sqrt[-d]*Sqrt[1 + 1/(c^2*x^2)])/((c^2*d - e)*e^(3/2)*(Sqrt[-d]* 
Sqrt[e] - d/x)) - (b*c*Sqrt[-d]*Sqrt[1 + 1/(c^2*x^2)])/(16*(c^2*d - e)*e^( 
3/2)*(Sqrt[-d]*Sqrt[e] + d/x)) + (Sqrt[-d]*(a + b*ArcSinh[1/(c*x)]))/(16*e 
^(3/2)*(Sqrt[-d]*Sqrt[e] - d/x)^2) + (3*(a + b*ArcSinh[1/(c*x)]))/(16*e^2* 
(Sqrt[-d]*Sqrt[e] - d/x)) - (Sqrt[-d]*(a + b*ArcSinh[1/(c*x)]))/(16*e^(3/2 
)*(Sqrt[-d]*Sqrt[e] + d/x)^2) - (3*(a + b*ArcSinh[1/(c*x)]))/(16*e^2*(Sqrt 
[-d]*Sqrt[e] + d/x)) - (3*b*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt 
[d]*Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])])/(16*Sqrt[d]*Sqrt[c^2*d - e]*e 
^2) + (b*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d - e] 
*Sqrt[1 + 1/(c^2*x^2)])])/(16*Sqrt[d]*(c^2*d - e)^(3/2)*e) - (3*b*ArcTanh[ 
(c^2*d + (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2* 
x^2)])])/(16*Sqrt[d]*Sqrt[c^2*d - e]*e^2) + (b*ArcTanh[(c^2*d + (Sqrt[-d]* 
Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])])/(16*Sqrt[d 
]*(c^2*d - e)^(3/2)*e) + (3*(a + b*ArcSinh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E 
^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(16*Sqrt[-d]*e^(5/2)) 
- (3*(a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqr 
t[e] - Sqrt[-(c^2*d) + e])])/(16*Sqrt[-d]*e^(5/2)) + (3*(a + b*ArcSinh[1/( 
c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + 
e])])/(16*Sqrt[-d]*e^(5/2)) - (3*(a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[ 
-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(16*Sqrt[-d]*e...
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6208
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] && (p > 
 0 || IGtQ[n, 0])
 

rule 6858
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
Maple [F]

\[\int \frac {x^{4} \left (a +b \,\operatorname {arccsch}\left (c x \right )\right )}{\left (x^{2} e +d \right )^{3}}d x\]

Input:

int(x^4*(a+b*arccsch(c*x))/(e*x^2+d)^3,x)
 

Output:

int(x^4*(a+b*arccsch(c*x))/(e*x^2+d)^3,x)
 

Fricas [F]

\[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{4}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \] Input:

integrate(x^4*(a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 

Output:

integral((b*x^4*arccsch(c*x) + a*x^4)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 
 + d^3), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \] Input:

integrate(x**4*(a+b*acsch(c*x))/(e*x**2+d)**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^4*(a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{4}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \] Input:

integrate(x^4*(a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 

Output:

integrate((b*arccsch(c*x) + a)*x^4/(e*x^2 + d)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^4\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \] Input:

int((x^4*(a + b*asinh(1/(c*x))))/(d + e*x^2)^3,x)
 

Output:

int((x^4*(a + b*asinh(1/(c*x))))/(d + e*x^2)^3, x)
 

Reduce [F]

\[ \int \frac {x^4 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\frac {3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,d^{2}+6 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a d e \,x^{2}+3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,e^{2} x^{4}+8 \left (\int \frac {\mathit {acsch} \left (c x \right ) x^{4}}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{3} e^{3}+16 \left (\int \frac {\mathit {acsch} \left (c x \right ) x^{4}}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{2} e^{4} x^{2}+8 \left (\int \frac {\mathit {acsch} \left (c x \right ) x^{4}}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b d \,e^{5} x^{4}-3 a \,d^{2} e x -5 a d \,e^{2} x^{3}}{8 d \,e^{3} \left (e^{2} x^{4}+2 d e \,x^{2}+d^{2}\right )} \] Input:

int(x^4*(a+b*acsch(c*x))/(e*x^2+d)^3,x)
 

Output:

(3*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d**2 + 6*sqrt(e)*sqrt(d 
)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d*e*x**2 + 3*sqrt(e)*sqrt(d)*atan((e*x)/ 
(sqrt(e)*sqrt(d)))*a*e**2*x**4 + 8*int((acsch(c*x)*x**4)/(d**3 + 3*d**2*e* 
x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**3*e**3 + 16*int((acsch(c*x)*x**4 
)/(d**3 + 3*d**2*e*x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**2*e**4*x**2 + 
 8*int((acsch(c*x)*x**4)/(d**3 + 3*d**2*e*x**2 + 3*d*e**2*x**4 + e**3*x**6 
),x)*b*d*e**5*x**4 - 3*a*d**2*e*x - 5*a*d*e**2*x**3)/(8*d*e**3*(d**2 + 2*d 
*e*x**2 + e**2*x**4))