\(\int \frac {a+b \text {csch}^{-1}(c x)}{(d+e x^2)^3} \, dx\) [118]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 1096 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx =\text {Too large to display} \] Output:

-1/16*b*c*e^(1/2)*(1+1/c^2/x^2)^(1/2)/(-d)^(3/2)/(c^2*d-e)/((-d)^(1/2)*e^( 
1/2)-d/x)-1/16*b*c*e^(1/2)*(1+1/c^2/x^2)^(1/2)/(-d)^(3/2)/(c^2*d-e)/((-d)^ 
(1/2)*e^(1/2)+d/x)+1/16*e^(1/2)*(a+b*arccsch(c*x))/(-d)^(3/2)/((-d)^(1/2)* 
e^(1/2)-d/x)^2-5/16*(a+b*arccsch(c*x))/d^2/((-d)^(1/2)*e^(1/2)-d/x)-1/16*e 
^(1/2)*(a+b*arccsch(c*x))/(-d)^(3/2)/((-d)^(1/2)*e^(1/2)+d/x)^2+5/16*(a+b* 
arccsch(c*x))/d^2/((-d)^(1/2)*e^(1/2)+d/x)+5/16*b*arctanh((c^2*d-(-d)^(1/2 
)*e^(1/2)/x)/c/d^(1/2)/(c^2*d-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d 
-e)^(1/2)+1/16*b*e*arctanh((c^2*d-(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d-e 
)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d-e)^(3/2)+5/16*b*arctanh((c^2*d 
+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(5 
/2)/(c^2*d-e)^(1/2)+1/16*b*e*arctanh((c^2*d+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2 
)/(c^2*d-e)^(1/2)/(1+1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d-e)^(3/2)+3/16*(a+b*a 
rccsch(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c^2* 
d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)-3/16*(a+b*arccsch(c*x))*ln(1+c*(-d)^(1/2)* 
(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)-(-c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2) 
+3/16*(a+b*arccsch(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^ 
(1/2)+(-c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)-3/16*(a+b*arccsch(c*x))*ln(1+c 
*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e^(1/2)+(-c^2*d+e)^(1/2)))/(-d)^( 
5/2)/e^(1/2)-3/16*b*polylog(2,-c*(-d)^(1/2)*(1/c/x+(1+1/c^2/x^2)^(1/2))/(e 
^(1/2)-(-c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)+3/16*b*polylog(2,c*(-d)^(1...
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.05 (sec) , antiderivative size = 2038, normalized size of antiderivative = 1.86 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Result too large to show} \] Input:

Integrate[(a + b*ArcCsch[c*x])/(d + e*x^2)^3,x]
 

Output:

(a*x)/(4*d*(d + e*x^2)^2) + (3*a*x)/(8*d^2*(d + e*x^2)) + (3*a*ArcTan[(Sqr 
t[e]*x)/Sqrt[d]])/(8*d^(5/2)*Sqrt[e]) + b*(((I/16)*((I*c*Sqrt[e]*Sqrt[1 + 
1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d - e)*((-I)*Sqrt[d] + Sqrt[e]*x)) - ArcCsch 
[c*x]/(Sqrt[e]*((-I)*Sqrt[d] + Sqrt[e]*x)^2) - ArcSinh[1/(c*x)]/(d*Sqrt[e] 
) + (I*(2*c^2*d - e)*Log[(4*d*Sqrt[c^2*d - e]*Sqrt[e]*(Sqrt[e] + I*c*(c*Sq 
rt[d] - Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])*x))/((2*c^2*d - e)*(Sqrt[d] 
 + I*Sqrt[e]*x))])/(d*(c^2*d - e)^(3/2))))/d^(3/2) - ((I/16)*(((-I)*c*Sqrt 
[e]*Sqrt[1 + 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d - e)*(I*Sqrt[d] + Sqrt[e]*x)) 
 - ArcCsch[c*x]/(Sqrt[e]*(I*Sqrt[d] + Sqrt[e]*x)^2) - ArcSinh[1/(c*x)]/(d* 
Sqrt[e]) + (I*(2*c^2*d - e)*Log[((4*I)*d*Sqrt[c^2*d - e]*Sqrt[e]*(I*Sqrt[e 
] + c*(c*Sqrt[d] + Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])*x))/((2*c^2*d - 
e)*(Sqrt[d] - I*Sqrt[e]*x))])/(d*(c^2*d - e)^(3/2))))/d^(3/2) - (3*(-(ArcC 
sch[c*x]/(I*Sqrt[d]*Sqrt[e] + e*x)) - (I*(ArcSinh[1/(c*x)]/Sqrt[e] - Log[( 
2*Sqrt[d]*Sqrt[e]*(I*Sqrt[e] + c*(c*Sqrt[d] + I*Sqrt[-(c^2*d) + e]*Sqrt[1 
+ 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) + e]*(I*Sqrt[d] + Sqrt[e]*x))]/Sqrt[-(c 
^2*d) + e]))/Sqrt[d]))/(16*d^2) - (3*(-(ArcCsch[c*x]/((-I)*Sqrt[d]*Sqrt[e] 
 + e*x)) + (I*(ArcSinh[1/(c*x)]/Sqrt[e] - Log[(-2*Sqrt[d]*Sqrt[e]*(Sqrt[e] 
 + c*(I*c*Sqrt[d] + Sqrt[-(c^2*d) + e]*Sqrt[1 + 1/(c^2*x^2)])*x))/(Sqrt[-( 
c^2*d) + e]*(Sqrt[d] + I*Sqrt[e]*x))]/Sqrt[-(c^2*d) + e]))/Sqrt[d]))/(16*d 
^2) + (((3*I)/128)*(Pi^2 - (4*I)*Pi*ArcCsch[c*x] - 8*ArcCsch[c*x]^2 + 3...
 

Rubi [A] (verified)

Time = 3.99 (sec) , antiderivative size = 1160, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6848, 6238, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 6848

\(\displaystyle -\int \frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^3 x^4}d\frac {1}{x}\)

\(\Big \downarrow \) 6238

\(\displaystyle -\int \left (\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) e^2}{d^2 \left (\frac {d}{x^2}+e\right )^3}-\frac {2 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) e}{d^2 \left (\frac {d}{x^2}+e\right )^2}+\frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{d^2 \left (\frac {d}{x^2}+e\right )}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {b \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} c}{16 (-d)^{3/2} \left (c^2 d-e\right ) \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {b \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} c}{16 (-d)^{3/2} \left (c^2 d-e\right ) \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}-\frac {5 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 d^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {5 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 d^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {\sqrt {e} \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 (-d)^{3/2} \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^2}-\frac {\sqrt {e} \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{16 (-d)^{3/2} \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^2}+\frac {b e \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \left (c^2 d-e\right )^{3/2}}+\frac {5 b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \sqrt {c^2 d-e}}+\frac {b e \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \left (c^2 d-e\right )^{3/2}}+\frac {5 b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d-e} \sqrt {1+\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \sqrt {c^2 d-e}}+\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {e-c^2 d}}+1\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{16 (-d)^{5/2} \sqrt {e}}\)

Input:

Int[(a + b*ArcCsch[c*x])/(d + e*x^2)^3,x]
 

Output:

-1/16*(b*c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)])/((-d)^(3/2)*(c^2*d - e)*(Sqrt[-d 
]*Sqrt[e] - d/x)) - (b*c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)])/(16*(-d)^(3/2)*(c^ 
2*d - e)*(Sqrt[-d]*Sqrt[e] + d/x)) + (Sqrt[e]*(a + b*ArcSinh[1/(c*x)]))/(1 
6*(-d)^(3/2)*(Sqrt[-d]*Sqrt[e] - d/x)^2) - (5*(a + b*ArcSinh[1/(c*x)]))/(1 
6*d^2*(Sqrt[-d]*Sqrt[e] - d/x)) - (Sqrt[e]*(a + b*ArcSinh[1/(c*x)]))/(16*( 
-d)^(3/2)*(Sqrt[-d]*Sqrt[e] + d/x)^2) + (5*(a + b*ArcSinh[1/(c*x)]))/(16*d 
^2*(Sqrt[-d]*Sqrt[e] + d/x)) + (5*b*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x) 
/(c*Sqrt[d]*Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])])/(16*d^(5/2)*Sqrt[c^2* 
d - e]) + (b*e*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2* 
d - e]*Sqrt[1 + 1/(c^2*x^2)])])/(16*d^(5/2)*(c^2*d - e)^(3/2)) + (5*b*ArcT 
anh[(c^2*d + (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d - e]*Sqrt[1 + 1/( 
c^2*x^2)])])/(16*d^(5/2)*Sqrt[c^2*d - e]) + (b*e*ArcTanh[(c^2*d + (Sqrt[-d 
]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d - e]*Sqrt[1 + 1/(c^2*x^2)])])/(16*d^(5 
/2)*(c^2*d - e)^(3/2)) + (3*(a + b*ArcSinh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E 
^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(16*(-d)^(5/2)*Sqrt[e] 
) - (3*(a + b*ArcSinh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(S 
qrt[e] - Sqrt[-(c^2*d) + e])])/(16*(-d)^(5/2)*Sqrt[e]) + (3*(a + b*ArcSinh 
[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d 
) + e])])/(16*(-d)^(5/2)*Sqrt[e]) - (3*(a + b*ArcSinh[1/(c*x)])*Log[1 + (c 
*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(16*(-d)...
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6238
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[e, c^ 
2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6848
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), 
 x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(2*(p + 1) 
)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p 
]
 
Maple [F]

\[\int \frac {a +b \,\operatorname {arccsch}\left (c x \right )}{\left (x^{2} e +d \right )^{3}}d x\]

Input:

int((a+b*arccsch(c*x))/(e*x^2+d)^3,x)
 

Output:

int((a+b*arccsch(c*x))/(e*x^2+d)^3,x)
 

Fricas [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{3}} \,d x } \] Input:

integrate((a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 

Output:

integral((b*arccsch(c*x) + a)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), 
 x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \] Input:

integrate((a+b*acsch(c*x))/(e*x**2+d)**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{3}} \,d x } \] Input:

integrate((a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 

Output:

integrate((b*arccsch(c*x) + a)/(e*x^2 + d)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{{\left (e\,x^2+d\right )}^3} \,d x \] Input:

int((a + b*asinh(1/(c*x)))/(d + e*x^2)^3,x)
 

Output:

int((a + b*asinh(1/(c*x)))/(d + e*x^2)^3, x)
 

Reduce [F]

\[ \int \frac {a+b \text {csch}^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\frac {3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,d^{2}+6 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a d e \,x^{2}+3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,e^{2} x^{4}+8 \left (\int \frac {\mathit {acsch} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{5} e +16 \left (\int \frac {\mathit {acsch} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{4} e^{2} x^{2}+8 \left (\int \frac {\mathit {acsch} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{3} e^{3} x^{4}+5 a \,d^{2} e x +3 a d \,e^{2} x^{3}}{8 d^{3} e \left (e^{2} x^{4}+2 d e \,x^{2}+d^{2}\right )} \] Input:

int((a+b*acsch(c*x))/(e*x^2+d)^3,x)
 

Output:

(3*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d**2 + 6*sqrt(e)*sqrt(d 
)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d*e*x**2 + 3*sqrt(e)*sqrt(d)*atan((e*x)/ 
(sqrt(e)*sqrt(d)))*a*e**2*x**4 + 8*int(acsch(c*x)/(d**3 + 3*d**2*e*x**2 + 
3*d*e**2*x**4 + e**3*x**6),x)*b*d**5*e + 16*int(acsch(c*x)/(d**3 + 3*d**2* 
e*x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**4*e**2*x**2 + 8*int(acsch(c*x) 
/(d**3 + 3*d**2*e*x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**3*e**3*x**4 + 
5*a*d**2*e*x + 3*a*d*e**2*x**3)/(8*d**3*e*(d**2 + 2*d*e*x**2 + e**2*x**4))