\(\int \frac {\text {erfi}(d (a+b \log (c x^n)))}{x^2} \, dx\) [250]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 94 \[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=-\frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x}+\frac {e^{-\frac {1}{4 b^2 d^2 n^2}+\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \text {erfi}\left (\frac {2 a b d^2-\frac {1}{n}+2 b^2 d^2 \log \left (c x^n\right )}{2 b d}\right )}{x} \] Output:

-erfi(d*(a+b*ln(c*x^n)))/x+exp(-1/4/b^2/d^2/n^2+a/b/n)*(c*x^n)^(1/n)*erfi( 
1/2*(2*a*b*d^2-1/n+2*b^2*d^2*ln(c*x^n))/b/d)/x
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.87 \[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\frac {-\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )+e^{\frac {-1+4 a b d^2 n}{4 b^2 d^2 n^2}} \left (c x^n\right )^{\frac {1}{n}} \text {erfi}\left (a d-\frac {1}{2 b d n}+b d \log \left (c x^n\right )\right )}{x} \] Input:

Integrate[Erfi[d*(a + b*Log[c*x^n])]/x^2,x]
 

Output:

(-Erfi[d*(a + b*Log[c*x^n])] + E^((-1 + 4*a*b*d^2*n)/(4*b^2*d^2*n^2))*(c*x 
^n)^n^(-1)*Erfi[a*d - 1/(2*b*d*n) + b*d*Log[c*x^n]])/x
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {6957, 2712, 2706, 2664, 2633}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx\)

\(\Big \downarrow \) 6957

\(\displaystyle \frac {2 b d n \int \frac {e^{d^2 \left (a+b \log \left (c x^n\right )\right )^2}}{x^2}dx}{\sqrt {\pi }}-\frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 2712

\(\displaystyle \frac {2 b d n x^{-2 a b d^2 n} \left (c x^n\right )^{2 a b d^2} \int e^{a^2 d^2+b^2 \log ^2\left (c x^n\right ) d^2} x^{2 a b d^2 n-2}dx}{\sqrt {\pi }}-\frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 2706

\(\displaystyle \frac {2 b d \left (c x^n\right )^{\frac {1}{n}} \int \exp \left (a^2 d^2+b^2 \log ^2\left (c x^n\right ) d^2-\frac {\left (1-2 a b d^2 n\right ) \log \left (c x^n\right )}{n}\right )d\log \left (c x^n\right )}{\sqrt {\pi } x}-\frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 2664

\(\displaystyle \frac {2 b d \left (c x^n\right )^{\frac {1}{n}} e^{\frac {a}{b n}-\frac {1}{4 b^2 d^2 n^2}} \int \exp \left (\frac {\left (2 a b d^2+2 b^2 \log \left (c x^n\right ) d^2-\frac {1}{n}\right )^2}{4 b^2 d^2}\right )d\log \left (c x^n\right )}{\sqrt {\pi } x}-\frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 2633

\(\displaystyle \frac {\left (c x^n\right )^{\frac {1}{n}} e^{\frac {a}{b n}-\frac {1}{4 b^2 d^2 n^2}} \text {erfi}\left (\frac {2 a b d^2+2 b^2 d^2 \log \left (c x^n\right )-\frac {1}{n}}{2 b d}\right )}{x}-\frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

Input:

Int[Erfi[d*(a + b*Log[c*x^n])]/x^2,x]
 

Output:

-(Erfi[d*(a + b*Log[c*x^n])]/x) + (E^(-1/4*1/(b^2*d^2*n^2) + a/(b*n))*(c*x 
^n)^n^(-1)*Erfi[(2*a*b*d^2 - n^(-1) + 2*b^2*d^2*Log[c*x^n])/(2*b*d)])/x
 

Defintions of rubi rules used

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2664
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[F^(a - b^2/ 
(4*c))   Int[F^((b + 2*c*x)^2/(4*c)), x], x] /; FreeQ[{F, a, b, c}, x]
 

rule 2706
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]^2*(b_.))*(f_.))*(( 
g_.) + (h_.)*(x_))^(m_.), x_Symbol] :> Simp[(g + h*x)^(m + 1)/(h*n*(c*(d + 
e*x)^n)^((m + 1)/n))   Subst[Int[E^(a*f*Log[F] + ((m + 1)*x)/n + b*f*Log[F] 
*x^2), x], x, Log[c*(d + e*x)^n]], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, 
m, n}, x] && EqQ[e*g - d*h, 0]
 

rule 2712
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.))*(( 
g_.) + (h_.)*(x_))^(m_.), x_Symbol] :> Simp[(g + h*x)^m*((c*(d + e*x)^n)^(2 
*a*b*f*Log[F])/(d + e*x)^(m + 2*a*b*f*n*Log[F]))*Int[(d + e*x)^(m + 2*a*b*f 
*n*Log[F])*F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x], x] /; FreeQ[{F, a, b 
, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0]
 

rule 6957
Int[Erfi[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x 
_Symbol] :> Simp[(e*x)^(m + 1)*(Erfi[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] 
 - Simp[2*b*d*(n/(Sqrt[Pi]*(m + 1)))   Int[(e*x)^m*E^(d*(a + b*Log[c*x^n])) 
^2, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
 
Maple [F]

\[\int \frac {\operatorname {erfi}\left (d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )}{x^{2}}d x\]

Input:

int(erfi(d*(a+b*ln(c*x^n)))/x^2,x)
 

Output:

int(erfi(d*(a+b*ln(c*x^n)))/x^2,x)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.35 \[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=-\frac {\sqrt {-b^{2} d^{2} n^{2}} x \operatorname {erf}\left (\frac {{\left (2 \, b^{2} d^{2} n^{2} \log \left (x\right ) + 2 \, b^{2} d^{2} n \log \left (c\right ) + 2 \, a b d^{2} n - 1\right )} \sqrt {-b^{2} d^{2} n^{2}}}{2 \, b^{2} d^{2} n^{2}}\right ) e^{\left (\frac {4 \, b^{2} d^{2} n \log \left (c\right ) + 4 \, a b d^{2} n - 1}{4 \, b^{2} d^{2} n^{2}}\right )} + \operatorname {erfi}\left (b d \log \left (c x^{n}\right ) + a d\right )}{x} \] Input:

integrate(erfi(d*(a+b*log(c*x^n)))/x^2,x, algorithm="fricas")
 

Output:

-(sqrt(-b^2*d^2*n^2)*x*erf(1/2*(2*b^2*d^2*n^2*log(x) + 2*b^2*d^2*n*log(c) 
+ 2*a*b*d^2*n - 1)*sqrt(-b^2*d^2*n^2)/(b^2*d^2*n^2))*e^(1/4*(4*b^2*d^2*n*l 
og(c) + 4*a*b*d^2*n - 1)/(b^2*d^2*n^2)) + erfi(b*d*log(c*x^n) + a*d))/x
 

Sympy [F]

\[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int \frac {\operatorname {erfi}{\left (a d + b d \log {\left (c x^{n} \right )} \right )}}{x^{2}}\, dx \] Input:

integrate(erfi(d*(a+b*ln(c*x**n)))/x**2,x)
 

Output:

Integral(erfi(a*d + b*d*log(c*x**n))/x**2, x)
 

Maxima [F]

\[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int { \frac {\operatorname {erfi}\left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{2}} \,d x } \] Input:

integrate(erfi(d*(a+b*log(c*x^n)))/x^2,x, algorithm="maxima")
 

Output:

integrate(erfi((b*log(c*x^n) + a)*d)/x^2, x)
 

Giac [F]

\[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int { \frac {\operatorname {erfi}\left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{2}} \,d x } \] Input:

integrate(erfi(d*(a+b*log(c*x^n)))/x^2,x, algorithm="giac")
 

Output:

integrate(erfi((b*log(c*x^n) + a)*d)/x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int \frac {\mathrm {erfi}\left (d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right )}{x^2} \,d x \] Input:

int(erfi(d*(a + b*log(c*x^n)))/x^2,x)
 

Output:

int(erfi(d*(a + b*log(c*x^n)))/x^2, x)
 

Reduce [F]

\[ \int \frac {\text {erfi}\left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=-\left (\int \frac {\mathrm {erf}\left (\mathrm {log}\left (x^{n} c \right ) b d i +a d i \right )}{x^{2}}d x \right ) i \] Input:

int(erfi(d*(a+b*log(c*x^n)))/x^2,x)
 

Output:

 - int(erf(log(x**n*c)*b*d*i + a*d*i)/x**2,x)*i