\(\int x \sin (a+b x) \text {Si}(a+b x) \, dx\) [56]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [C] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 97 \[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=-\frac {\cos (2 a+2 b x)}{4 b^2}+\frac {\operatorname {CosIntegral}(2 a+2 b x)}{2 b^2}-\frac {\log (a+b x)}{2 b^2}-\frac {x \cos (a+b x) \text {Si}(a+b x)}{b}+\frac {\sin (a+b x) \text {Si}(a+b x)}{b^2}-\frac {a \text {Si}(2 a+2 b x)}{2 b^2} \] Output:

-1/4*cos(2*b*x+2*a)/b^2+1/2*Ci(2*b*x+2*a)/b^2-1/2*ln(b*x+a)/b^2-x*cos(b*x+ 
a)*Si(b*x+a)/b+sin(b*x+a)*Si(b*x+a)/b^2-1/2*a*Si(2*b*x+2*a)/b^2
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.73 \[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=-\frac {\cos (2 (a+b x))-2 \operatorname {CosIntegral}(2 (a+b x))+2 \log (a+b x)+4 (b x \cos (a+b x)-\sin (a+b x)) \text {Si}(a+b x)+2 a \text {Si}(2 (a+b x))}{4 b^2} \] Input:

Integrate[x*Sin[a + b*x]*SinIntegral[a + b*x],x]
 

Output:

-1/4*(Cos[2*(a + b*x)] - 2*CosIntegral[2*(a + b*x)] + 2*Log[a + b*x] + 4*( 
b*x*Cos[a + b*x] - Sin[a + b*x])*SinIntegral[a + b*x] + 2*a*SinIntegral[2* 
(a + b*x)])/b^2
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.643, Rules used = {7067, 5084, 7071, 3042, 3793, 2009, 7292, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \text {Si}(a+b x) \sin (a+b x) \, dx\)

\(\Big \downarrow \) 7067

\(\displaystyle \frac {\int \cos (a+b x) \text {Si}(a+b x)dx}{b}+\int \frac {x \cos (a+b x) \sin (a+b x)}{a+b x}dx-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 5084

\(\displaystyle \frac {\int \cos (a+b x) \text {Si}(a+b x)dx}{b}+\frac {1}{2} \int \frac {x \sin (2 (a+b x))}{a+b x}dx-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 7071

\(\displaystyle \frac {\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\int \frac {\sin ^2(a+b x)}{a+b x}dx}{b}+\frac {1}{2} \int \frac {x \sin (2 (a+b x))}{a+b x}dx-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\int \frac {\sin (a+b x)^2}{a+b x}dx}{b}+\frac {1}{2} \int \frac {x \sin (2 (a+b x))}{a+b x}dx-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 3793

\(\displaystyle \frac {\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\int \left (\frac {1}{2 (a+b x)}-\frac {\cos (2 a+2 b x)}{2 (a+b x)}\right )dx}{b}+\frac {1}{2} \int \frac {x \sin (2 (a+b x))}{a+b x}dx-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \int \frac {x \sin (2 (a+b x))}{a+b x}dx+\frac {\frac {\operatorname {CosIntegral}(2 a+2 b x)}{2 b}+\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\log (a+b x)}{2 b}}{b}-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 7292

\(\displaystyle \frac {1}{2} \int \frac {x \sin (2 a+2 b x)}{a+b x}dx+\frac {\frac {\operatorname {CosIntegral}(2 a+2 b x)}{2 b}+\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\log (a+b x)}{2 b}}{b}-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {1}{2} \int \left (\frac {\sin (2 a+2 b x)}{b}+\frac {a \sin (2 a+2 b x)}{b (-a-b x)}\right )dx+\frac {\frac {\operatorname {CosIntegral}(2 a+2 b x)}{2 b}+\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\log (a+b x)}{2 b}}{b}-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \left (-\frac {a \text {Si}(2 a+2 b x)}{b^2}-\frac {\cos (2 a+2 b x)}{2 b^2}\right )+\frac {\frac {\operatorname {CosIntegral}(2 a+2 b x)}{2 b}+\frac {\text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\log (a+b x)}{2 b}}{b}-\frac {x \text {Si}(a+b x) \cos (a+b x)}{b}\)

Input:

Int[x*Sin[a + b*x]*SinIntegral[a + b*x],x]
 

Output:

-((x*Cos[a + b*x]*SinIntegral[a + b*x])/b) + (CosIntegral[2*a + 2*b*x]/(2* 
b) - Log[a + b*x]/(2*b) + (Sin[a + b*x]*SinIntegral[a + b*x])/b)/b + (-1/2 
*Cos[2*a + 2*b*x]/b^2 - (a*SinIntegral[2*a + 2*b*x])/b^2)/2
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3793
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> In 
t[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f 
, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1]))
 

rule 5084
Int[Cos[w_]^(p_.)*(u_.)*Sin[v_]^(p_.), x_Symbol] :> Simp[1/2^p   Int[u*Sin[ 
2*v]^p, x], x] /; EqQ[w, v] && IntegerQ[p]
 

rule 7067
Int[((e_.) + (f_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + 
(d_.)*(x_)], x_Symbol] :> Simp[(-(e + f*x)^m)*Cos[a + b*x]*(SinIntegral[c + 
 d*x]/b), x] + (Simp[d/b   Int[(e + f*x)^m*Cos[a + b*x]*(Sin[c + d*x]/(c + 
d*x)), x], x] + Simp[f*(m/b)   Int[(e + f*x)^(m - 1)*Cos[a + b*x]*SinIntegr 
al[c + d*x], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
 

rule 7071
Int[Cos[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[Sin[a + b*x]*(SinIntegral[c + d*x]/b), x] - Simp[d/b   Int[Sin[a + b*x] 
*(Sin[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [A] (verified)

Time = 8.83 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.85

method result size
derivativedivides \(\frac {\operatorname {Si}\left (b x +a \right ) \left (\sin \left (b x +a \right )-\left (b x +a \right ) \cos \left (b x +a \right )+a \cos \left (b x +a \right )\right )-\frac {\ln \left (b x +a \right )}{2}+\frac {\operatorname {Ci}\left (2 b x +2 a \right )}{2}-\frac {\cos \left (b x +a \right )^{2}}{2}-\frac {a \,\operatorname {Si}\left (2 b x +2 a \right )}{2}}{b^{2}}\) \(82\)
default \(\frac {\operatorname {Si}\left (b x +a \right ) \left (\sin \left (b x +a \right )-\left (b x +a \right ) \cos \left (b x +a \right )+a \cos \left (b x +a \right )\right )-\frac {\ln \left (b x +a \right )}{2}+\frac {\operatorname {Ci}\left (2 b x +2 a \right )}{2}-\frac {\cos \left (b x +a \right )^{2}}{2}-\frac {a \,\operatorname {Si}\left (2 b x +2 a \right )}{2}}{b^{2}}\) \(82\)

Input:

int(x*sin(b*x+a)*Si(b*x+a),x,method=_RETURNVERBOSE)
 

Output:

1/b^2*(Si(b*x+a)*(sin(b*x+a)-(b*x+a)*cos(b*x+a)+a*cos(b*x+a))-1/2*ln(b*x+a 
)+1/2*Ci(2*b*x+2*a)-1/2*cos(b*x+a)^2-1/2*a*Si(2*b*x+2*a))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.74 \[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=-\frac {2 \, b x \cos \left (b x + a\right ) \operatorname {Si}\left (b x + a\right ) + \cos \left (b x + a\right )^{2} + a \operatorname {Si}\left (2 \, b x + 2 \, a\right ) - 2 \, \sin \left (b x + a\right ) \operatorname {Si}\left (b x + a\right ) - \operatorname {Ci}\left (2 \, b x + 2 \, a\right ) + \log \left (b x + a\right )}{2 \, b^{2}} \] Input:

integrate(x*sin(b*x+a)*sin_integral(b*x+a),x, algorithm="fricas")
 

Output:

-1/2*(2*b*x*cos(b*x + a)*sin_integral(b*x + a) + cos(b*x + a)^2 + a*sin_in 
tegral(2*b*x + 2*a) - 2*sin(b*x + a)*sin_integral(b*x + a) - cos_integral( 
2*b*x + 2*a) + log(b*x + a))/b^2
 

Sympy [F]

\[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=\int x \sin {\left (a + b x \right )} \operatorname {Si}{\left (a + b x \right )}\, dx \] Input:

integrate(x*sin(b*x+a)*Si(b*x+a),x)
 

Output:

Integral(x*sin(a + b*x)*Si(a + b*x), x)
 

Maxima [F]

\[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=\int { x \sin \left (b x + a\right ) \operatorname {Si}\left (b x + a\right ) \,d x } \] Input:

integrate(x*sin(b*x+a)*sin_integral(b*x+a),x, algorithm="maxima")
 

Output:

integrate(x*sin(b*x + a)*sin_integral(b*x + a), x)
 

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 507, normalized size of antiderivative = 5.23 \[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx =\text {Too large to display} \] Input:

integrate(x*sin(b*x+a)*sin_integral(b*x+a),x, algorithm="giac")
 

Output:

-(x*cos(b*x + a)/b - sin(b*x + a)/b^2)*sin_integral(b*x + a) - 1/4*(a*imag 
_part(cos_integral(2*b*x + 2*a))*tan(b*x)^2*tan(a)^2 - a*imag_part(cos_int 
egral(-2*b*x - 2*a))*tan(b*x)^2*tan(a)^2 + 2*a*sin_integral(2*b*x + 2*a)*t 
an(b*x)^2*tan(a)^2 + 2*log(abs(b*x + a))*tan(b*x)^2*tan(a)^2 - real_part(c 
os_integral(2*b*x + 2*a))*tan(b*x)^2*tan(a)^2 - real_part(cos_integral(-2* 
b*x - 2*a))*tan(b*x)^2*tan(a)^2 + a*imag_part(cos_integral(2*b*x + 2*a))*t 
an(b*x)^2 - a*imag_part(cos_integral(-2*b*x - 2*a))*tan(b*x)^2 + 2*a*sin_i 
ntegral(2*b*x + 2*a)*tan(b*x)^2 + a*imag_part(cos_integral(2*b*x + 2*a))*t 
an(a)^2 - a*imag_part(cos_integral(-2*b*x - 2*a))*tan(a)^2 + 2*a*sin_integ 
ral(2*b*x + 2*a)*tan(a)^2 + tan(b*x)^2*tan(a)^2 + 2*log(abs(b*x + a))*tan( 
b*x)^2 - real_part(cos_integral(2*b*x + 2*a))*tan(b*x)^2 - real_part(cos_i 
ntegral(-2*b*x - 2*a))*tan(b*x)^2 + 2*log(abs(b*x + a))*tan(a)^2 - real_pa 
rt(cos_integral(2*b*x + 2*a))*tan(a)^2 - real_part(cos_integral(-2*b*x - 2 
*a))*tan(a)^2 + a*imag_part(cos_integral(2*b*x + 2*a)) - a*imag_part(cos_i 
ntegral(-2*b*x - 2*a)) + 2*a*sin_integral(2*b*x + 2*a) - tan(b*x)^2 - 4*ta 
n(b*x)*tan(a) - tan(a)^2 + 2*log(abs(b*x + a)) - real_part(cos_integral(2* 
b*x + 2*a)) - real_part(cos_integral(-2*b*x - 2*a)) + 1)/(b^2*tan(b*x)^2*t 
an(a)^2 + b^2*tan(b*x)^2 + b^2*tan(a)^2 + b^2)
 

Mupad [F(-1)]

Timed out. \[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=\int x\,\mathrm {sinint}\left (a+b\,x\right )\,\sin \left (a+b\,x\right ) \,d x \] Input:

int(x*sinint(a + b*x)*sin(a + b*x),x)
 

Output:

int(x*sinint(a + b*x)*sin(a + b*x), x)
 

Reduce [F]

\[ \int x \sin (a+b x) \text {Si}(a+b x) \, dx=\int \mathit {si} \left (b x +a \right ) \sin \left (b x +a \right ) x d x \] Input:

int(x*sin(b*x+a)*Si(b*x+a),x)
 

Output:

int(si(a + b*x)*sin(a + b*x)*x,x)