\(\int x \cos (a+b x) \text {Si}(a+b x) \, dx\) [60]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [C] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 108 \[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=-\frac {x}{2 b}-\frac {a \operatorname {CosIntegral}(2 a+2 b x)}{2 b^2}+\frac {a \log (a+b x)}{2 b^2}+\frac {\cos (a+b x) \sin (a+b x)}{2 b^2}+\frac {\cos (a+b x) \text {Si}(a+b x)}{b^2}+\frac {x \sin (a+b x) \text {Si}(a+b x)}{b}-\frac {\text {Si}(2 a+2 b x)}{2 b^2} \] Output:

-1/2*x/b-1/2*a*Ci(2*b*x+2*a)/b^2+1/2*a*ln(b*x+a)/b^2+1/2*cos(b*x+a)*sin(b* 
x+a)/b^2+cos(b*x+a)*Si(b*x+a)/b^2+x*sin(b*x+a)*Si(b*x+a)/b-1/2*Si(2*b*x+2* 
a)/b^2
 

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.69 \[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=\frac {-2 b x-2 a \operatorname {CosIntegral}(2 (a+b x))+2 a \log (a+b x)+\sin (2 (a+b x))+4 (\cos (a+b x)+b x \sin (a+b x)) \text {Si}(a+b x)-2 \text {Si}(2 (a+b x))}{4 b^2} \] Input:

Integrate[x*Cos[a + b*x]*SinIntegral[a + b*x],x]
 

Output:

(-2*b*x - 2*a*CosIntegral[2*(a + b*x)] + 2*a*Log[a + b*x] + Sin[2*(a + b*x 
)] + 4*(Cos[a + b*x] + b*x*Sin[a + b*x])*SinIntegral[a + b*x] - 2*SinInteg 
ral[2*(a + b*x)])/(4*b^2)
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.06, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {7073, 7065, 4906, 27, 3042, 3780, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \text {Si}(a+b x) \cos (a+b x) \, dx\)

\(\Big \downarrow \) 7073

\(\displaystyle -\frac {\int \sin (a+b x) \text {Si}(a+b x)dx}{b}-\int \frac {x \sin ^2(a+b x)}{a+b x}dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}\)

\(\Big \downarrow \) 7065

\(\displaystyle -\frac {\int \frac {\cos (a+b x) \sin (a+b x)}{a+b x}dx-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}-\int \frac {x \sin ^2(a+b x)}{a+b x}dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}\)

\(\Big \downarrow \) 4906

\(\displaystyle -\frac {\int \frac {\sin (2 a+2 b x)}{2 (a+b x)}dx-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}-\int \frac {x \sin ^2(a+b x)}{a+b x}dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {1}{2} \int \frac {\sin (2 a+2 b x)}{a+b x}dx-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}-\int \frac {x \sin ^2(a+b x)}{a+b x}dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {1}{2} \int \frac {\sin (2 a+2 b x)}{a+b x}dx-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}-\int \frac {x \sin ^2(a+b x)}{a+b x}dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}\)

\(\Big \downarrow \) 3780

\(\displaystyle -\int \frac {x \sin ^2(a+b x)}{a+b x}dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\frac {\text {Si}(2 a+2 b x)}{2 b}-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\int \left (\frac {\sin ^2(a+b x)}{b}-\frac {a \sin ^2(a+b x)}{b (a+b x)}\right )dx+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\frac {\text {Si}(2 a+2 b x)}{2 b}-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a \operatorname {CosIntegral}(2 a+2 b x)}{2 b^2}+\frac {a \log (a+b x)}{2 b^2}+\frac {\sin (a+b x) \cos (a+b x)}{2 b^2}+\frac {x \text {Si}(a+b x) \sin (a+b x)}{b}-\frac {\frac {\text {Si}(2 a+2 b x)}{2 b}-\frac {\text {Si}(a+b x) \cos (a+b x)}{b}}{b}-\frac {x}{2 b}\)

Input:

Int[x*Cos[a + b*x]*SinIntegral[a + b*x],x]
 

Output:

-1/2*x/b - (a*CosIntegral[2*a + 2*b*x])/(2*b^2) + (a*Log[a + b*x])/(2*b^2) 
 + (Cos[a + b*x]*Sin[a + b*x])/(2*b^2) + (x*Sin[a + b*x]*SinIntegral[a + b 
*x])/b - (-((Cos[a + b*x]*SinIntegral[a + b*x])/b) + SinIntegral[2*a + 2*b 
*x]/(2*b))/b
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3780
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinInte 
gral[e + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*e - c*f, 0]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 7065
Int[Sin[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[(-Cos[a + b*x])*(SinIntegral[c + d*x]/b), x] + Simp[d/b   Int[Cos[a + b 
*x]*(Sin[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
 

rule 7073
Int[Cos[(a_.) + (b_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*SinIntegral[(c_.) + 
(d_.)*(x_)], x_Symbol] :> Simp[(e + f*x)^m*Sin[a + b*x]*(SinIntegral[c + d* 
x]/b), x] + (-Simp[d/b   Int[(e + f*x)^m*Sin[a + b*x]*(Sin[c + d*x]/(c + d* 
x)), x], x] - Simp[f*(m/b)   Int[(e + f*x)^(m - 1)*Sin[a + b*x]*SinIntegral 
[c + d*x], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [A] (verified)

Time = 8.98 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.88

method result size
derivativedivides \(\frac {\operatorname {Si}\left (b x +a \right ) \left (\cos \left (b x +a \right )+\left (b x +a \right ) \sin \left (b x +a \right )-a \sin \left (b x +a \right )\right )-\frac {\operatorname {Si}\left (2 b x +2 a \right )}{2}+\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{2}-\frac {b x}{2}-\frac {a}{2}+a \left (\frac {\ln \left (b x +a \right )}{2}-\frac {\operatorname {Ci}\left (2 b x +2 a \right )}{2}\right )}{b^{2}}\) \(95\)
default \(\frac {\operatorname {Si}\left (b x +a \right ) \left (\cos \left (b x +a \right )+\left (b x +a \right ) \sin \left (b x +a \right )-a \sin \left (b x +a \right )\right )-\frac {\operatorname {Si}\left (2 b x +2 a \right )}{2}+\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{2}-\frac {b x}{2}-\frac {a}{2}+a \left (\frac {\ln \left (b x +a \right )}{2}-\frac {\operatorname {Ci}\left (2 b x +2 a \right )}{2}\right )}{b^{2}}\) \(95\)

Input:

int(x*cos(b*x+a)*Si(b*x+a),x,method=_RETURNVERBOSE)
 

Output:

1/b^2*(Si(b*x+a)*(cos(b*x+a)+(b*x+a)*sin(b*x+a)-a*sin(b*x+a))-1/2*Si(2*b*x 
+2*a)+1/2*sin(b*x+a)*cos(b*x+a)-1/2*b*x-1/2*a+a*(1/2*ln(b*x+a)-1/2*Ci(2*b* 
x+2*a)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.71 \[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=-\frac {b x + a \operatorname {Ci}\left (2 \, b x + 2 \, a\right ) - a \log \left (b x + a\right ) - {\left (2 \, b x \operatorname {Si}\left (b x + a\right ) + \cos \left (b x + a\right )\right )} \sin \left (b x + a\right ) - 2 \, \cos \left (b x + a\right ) \operatorname {Si}\left (b x + a\right ) + \operatorname {Si}\left (2 \, b x + 2 \, a\right )}{2 \, b^{2}} \] Input:

integrate(x*cos(b*x+a)*sin_integral(b*x+a),x, algorithm="fricas")
 

Output:

-1/2*(b*x + a*cos_integral(2*b*x + 2*a) - a*log(b*x + a) - (2*b*x*sin_inte 
gral(b*x + a) + cos(b*x + a))*sin(b*x + a) - 2*cos(b*x + a)*sin_integral(b 
*x + a) + sin_integral(2*b*x + 2*a))/b^2
 

Sympy [F]

\[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=\int x \cos {\left (a + b x \right )} \operatorname {Si}{\left (a + b x \right )}\, dx \] Input:

integrate(x*cos(b*x+a)*Si(b*x+a),x)
 

Output:

Integral(x*cos(a + b*x)*Si(a + b*x), x)
 

Maxima [F]

\[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=\int { x \cos \left (b x + a\right ) \operatorname {Si}\left (b x + a\right ) \,d x } \] Input:

integrate(x*cos(b*x+a)*sin_integral(b*x+a),x, algorithm="maxima")
 

Output:

integrate(x*cos(b*x + a)*sin_integral(b*x + a), x)
 

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 528, normalized size of antiderivative = 4.89 \[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx =\text {Too large to display} \] Input:

integrate(x*cos(b*x+a)*sin_integral(b*x+a),x, algorithm="giac")
 

Output:

(x*sin(b*x + a)/b + cos(b*x + a)/b^2)*sin_integral(b*x + a) - 1/4*(2*b*x*t 
an(b*x)^2*tan(a)^2 - 2*a*log(abs(b*x + a))*tan(b*x)^2*tan(a)^2 + a*real_pa 
rt(cos_integral(2*b*x + 2*a))*tan(b*x)^2*tan(a)^2 + a*real_part(cos_integr 
al(-2*b*x - 2*a))*tan(b*x)^2*tan(a)^2 + imag_part(cos_integral(2*b*x + 2*a 
))*tan(b*x)^2*tan(a)^2 - imag_part(cos_integral(-2*b*x - 2*a))*tan(b*x)^2* 
tan(a)^2 + 2*sin_integral(2*b*x + 2*a)*tan(b*x)^2*tan(a)^2 + 2*b*x*tan(b*x 
)^2 - 2*a*log(abs(b*x + a))*tan(b*x)^2 + a*real_part(cos_integral(2*b*x + 
2*a))*tan(b*x)^2 + a*real_part(cos_integral(-2*b*x - 2*a))*tan(b*x)^2 + 2* 
b*x*tan(a)^2 - 2*a*log(abs(b*x + a))*tan(a)^2 + a*real_part(cos_integral(2 
*b*x + 2*a))*tan(a)^2 + a*real_part(cos_integral(-2*b*x - 2*a))*tan(a)^2 + 
 imag_part(cos_integral(2*b*x + 2*a))*tan(b*x)^2 - imag_part(cos_integral( 
-2*b*x - 2*a))*tan(b*x)^2 + 2*sin_integral(2*b*x + 2*a)*tan(b*x)^2 + 2*tan 
(b*x)^2*tan(a) + imag_part(cos_integral(2*b*x + 2*a))*tan(a)^2 - imag_part 
(cos_integral(-2*b*x - 2*a))*tan(a)^2 + 2*sin_integral(2*b*x + 2*a)*tan(a) 
^2 + 2*tan(b*x)*tan(a)^2 + 2*b*x - 2*a*log(abs(b*x + a)) + a*real_part(cos 
_integral(2*b*x + 2*a)) + a*real_part(cos_integral(-2*b*x - 2*a)) + imag_p 
art(cos_integral(2*b*x + 2*a)) - imag_part(cos_integral(-2*b*x - 2*a)) + 2 
*sin_integral(2*b*x + 2*a) - 2*tan(b*x) - 2*tan(a))/(b^2*tan(b*x)^2*tan(a) 
^2 + b^2*tan(b*x)^2 + b^2*tan(a)^2 + b^2)
 

Mupad [F(-1)]

Timed out. \[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=\int x\,\mathrm {sinint}\left (a+b\,x\right )\,\cos \left (a+b\,x\right ) \,d x \] Input:

int(x*sinint(a + b*x)*cos(a + b*x),x)
 

Output:

int(x*sinint(a + b*x)*cos(a + b*x), x)
 

Reduce [F]

\[ \int x \cos (a+b x) \text {Si}(a+b x) \, dx=\int \cos \left (b x +a \right ) \mathit {si} \left (b x +a \right ) x d x \] Input:

int(x*cos(b*x+a)*Si(b*x+a),x)
 

Output:

int(cos(a + b*x)*si(a + b*x)*x,x)