\(\int x \sinh (b x) \text {Shi}(b x) \, dx\) [43]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 61 \[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\frac {\text {Chi}(2 b x)}{2 b^2}-\frac {\log (x)}{2 b^2}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \cosh (b x) \text {Shi}(b x)}{b}-\frac {\sinh (b x) \text {Shi}(b x)}{b^2} \] Output:

1/2*Chi(2*b*x)/b^2-1/2*ln(x)/b^2-1/2*sinh(b*x)^2/b^2+x*cosh(b*x)*Shi(b*x)/ 
b-sinh(b*x)*Shi(b*x)/b^2
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.72 \[ \int x \sinh (b x) \text {Shi}(b x) \, dx=-\frac {\cosh (2 b x)-2 \text {Chi}(2 b x)+2 \log (x)+(-4 b x \cosh (b x)+4 \sinh (b x)) \text {Shi}(b x)}{4 b^2} \] Input:

Integrate[x*Sinh[b*x]*SinhIntegral[b*x],x]
 

Output:

-1/4*(Cosh[2*b*x] - 2*CoshIntegral[2*b*x] + 2*Log[x] + (-4*b*x*Cosh[b*x] + 
 4*Sinh[b*x])*SinhIntegral[b*x])/b^2
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.07, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.200, Rules used = {7096, 27, 3042, 26, 3044, 15, 7100, 27, 3042, 25, 3793, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \text {Shi}(b x) \sinh (b x) \, dx\)

\(\Big \downarrow \) 7096

\(\displaystyle -\frac {\int \cosh (b x) \text {Shi}(b x)dx}{b}-\int \frac {\cosh (b x) \sinh (b x)}{b}dx+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \cosh (b x) \text {Shi}(b x)dx}{b}-\frac {\int \cosh (b x) \sinh (b x)dx}{b}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \cosh (b x) \text {Shi}(b x)dx}{b}-\frac {\int -i \cos (i b x) \sin (i b x)dx}{b}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {\int \cosh (b x) \text {Shi}(b x)dx}{b}+\frac {i \int \cos (i b x) \sin (i b x)dx}{b}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {\int i \sinh (b x)d(i \sinh (b x))}{b^2}-\frac {\int \cosh (b x) \text {Shi}(b x)dx}{b}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {\int \cosh (b x) \text {Shi}(b x)dx}{b}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 7100

\(\displaystyle -\frac {\frac {\text {Shi}(b x) \sinh (b x)}{b}-\int \frac {\sinh ^2(b x)}{b x}dx}{b}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\text {Shi}(b x) \sinh (b x)}{b}-\frac {\int \frac {\sinh ^2(b x)}{x}dx}{b}}{b}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\text {Shi}(b x) \sinh (b x)}{b}-\frac {\int -\frac {\sin (i b x)^2}{x}dx}{b}}{b}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\text {Shi}(b x) \sinh (b x)}{b}+\frac {\int \frac {\sin (i b x)^2}{x}dx}{b}}{b}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 3793

\(\displaystyle -\frac {\frac {\int \left (\frac {1}{2 x}-\frac {\cosh (2 b x)}{2 x}\right )dx}{b}+\frac {\text {Shi}(b x) \sinh (b x)}{b}}{b}-\frac {\sinh ^2(b x)}{2 b^2}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sinh ^2(b x)}{2 b^2}-\frac {\frac {\frac {\log (x)}{2}-\frac {\text {Chi}(2 b x)}{2}}{b}+\frac {\text {Shi}(b x) \sinh (b x)}{b}}{b}+\frac {x \text {Shi}(b x) \cosh (b x)}{b}\)

Input:

Int[x*Sinh[b*x]*SinhIntegral[b*x],x]
 

Output:

-1/2*Sinh[b*x]^2/b^2 + (x*Cosh[b*x]*SinhIntegral[b*x])/b - ((-1/2*CoshInte 
gral[2*b*x] + Log[x]/2)/b + (Sinh[b*x]*SinhIntegral[b*x])/b)/b
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3793
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> In 
t[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f 
, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1]))
 

rule 7096
Int[((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) 
+ (d_.)*(x_)], x_Symbol] :> Simp[(e + f*x)^m*Cosh[a + b*x]*(SinhIntegral[c 
+ d*x]/b), x] + (-Simp[d/b   Int[(e + f*x)^m*Cosh[a + b*x]*(Sinh[c + d*x]/( 
c + d*x)), x], x] - Simp[f*(m/b)   Int[(e + f*x)^(m - 1)*Cosh[a + b*x]*Sinh 
Integral[c + d*x], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
 

rule 7100
Int[Cosh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> 
 Simp[Sinh[a + b*x]*(SinhIntegral[c + d*x]/b), x] - Simp[d/b   Int[Sinh[a + 
 b*x]*(Sinh[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
 
Maple [A] (verified)

Time = 0.71 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.75

method result size
derivativedivides \(\frac {\operatorname {Shi}\left (b x \right ) \left (b x \cosh \left (b x \right )-\sinh \left (b x \right )\right )-\frac {\cosh \left (b x \right )^{2}}{2}-\frac {\ln \left (b x \right )}{2}+\frac {\operatorname {Chi}\left (2 b x \right )}{2}}{b^{2}}\) \(46\)
default \(\frac {\operatorname {Shi}\left (b x \right ) \left (b x \cosh \left (b x \right )-\sinh \left (b x \right )\right )-\frac {\cosh \left (b x \right )^{2}}{2}-\frac {\ln \left (b x \right )}{2}+\frac {\operatorname {Chi}\left (2 b x \right )}{2}}{b^{2}}\) \(46\)

Input:

int(x*sinh(b*x)*Shi(b*x),x,method=_RETURNVERBOSE)
 

Output:

1/b^2*(Shi(b*x)*(b*x*cosh(b*x)-sinh(b*x))-1/2*cosh(b*x)^2-1/2*ln(b*x)+1/2* 
Chi(2*b*x))
 

Fricas [F]

\[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\int { x {\rm Shi}\left (b x\right ) \sinh \left (b x\right ) \,d x } \] Input:

integrate(x*sinh(b*x)*Shi(b*x),x, algorithm="fricas")
 

Output:

integral(x*sinh(b*x)*sinh_integral(b*x), x)
 

Sympy [F]

\[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\int x \sinh {\left (b x \right )} \operatorname {Shi}{\left (b x \right )}\, dx \] Input:

integrate(x*sinh(b*x)*Shi(b*x),x)
 

Output:

Integral(x*sinh(b*x)*Shi(b*x), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\int { x {\rm Shi}\left (b x\right ) \sinh \left (b x\right ) \,d x } \] Input:

integrate(x*sinh(b*x)*Shi(b*x),x, algorithm="maxima")
 

Output:

integrate(x*Shi(b*x)*sinh(b*x), x)
 

Giac [F]

\[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\int { x {\rm Shi}\left (b x\right ) \sinh \left (b x\right ) \,d x } \] Input:

integrate(x*sinh(b*x)*Shi(b*x),x, algorithm="giac")
 

Output:

integrate(x*Shi(b*x)*sinh(b*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\int x\,\mathrm {sinhint}\left (b\,x\right )\,\mathrm {sinh}\left (b\,x\right ) \,d x \] Input:

int(x*sinhint(b*x)*sinh(b*x),x)
 

Output:

int(x*sinhint(b*x)*sinh(b*x), x)
 

Reduce [F]

\[ \int x \sinh (b x) \text {Shi}(b x) \, dx=\int \mathit {shi} \left (b x \right ) \sinh \left (b x \right ) x d x \] Input:

int(x*sinh(b*x)*Shi(b*x),x)
 

Output:

int(shi(b*x)*sinh(b*x)*x,x)