\(\int \frac {\Gamma (p,d (a+b \log (c x^n)))}{x^2} \, dx\) [200]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 109 \[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=-\frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x}+\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \Gamma \left (p,\frac {(1+b d n) \left (a+b \log \left (c x^n\right )\right )}{b n}\right ) \left (d \left (a+b \log \left (c x^n\right )\right )\right )^p \left (\frac {(1+b d n) \left (a+b \log \left (c x^n\right )\right )}{b n}\right )^{-p}}{x} \] Output:

-GAMMA(p,d*(a+b*ln(c*x^n)))/x+exp(a/b/n)*(c*x^n)^(1/n)*GAMMA(p,(b*d*n+1)*( 
a+b*ln(c*x^n))/b/n)*(d*(a+b*ln(c*x^n)))^p/x/(((b*d*n+1)*(a+b*ln(c*x^n))/b/ 
n)^p)
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.98 \[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\frac {-\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )+e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \Gamma \left (p,\frac {(1+b d n) \left (a+b \log \left (c x^n\right )\right )}{b n}\right ) \left (d \left (a+b \log \left (c x^n\right )\right )\right )^p \left (\frac {(1+b d n) \left (a+b \log \left (c x^n\right )\right )}{b n}\right )^{-p}}{x} \] Input:

Integrate[Gamma[p, d*(a + b*Log[c*x^n])]/x^2,x]
 

Output:

(-Gamma[p, d*(a + b*Log[c*x^n])] + (E^(a/(b*n))*(c*x^n)^n^(-1)*Gamma[p, (( 
1 + b*d*n)*(a + b*Log[c*x^n]))/(b*n)]*(d*(a + b*Log[c*x^n]))^p)/(((1 + b*d 
*n)*(a + b*Log[c*x^n]))/(b*n))^p)/x
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.07, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {7132, 7271, 2747, 2612}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx\)

\(\Big \downarrow \) 7132

\(\displaystyle -b d n e^{-a d} x^{b d n} \left (c x^n\right )^{-b d} \int x^{-b d n-2} \left (d \left (a+b \log \left (c x^n\right )\right )\right )^{p-1}dx-\frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 7271

\(\displaystyle -b n e^{-a d} x^{b d n} \left (c x^n\right )^{-b d} \left (a+b \log \left (c x^n\right )\right )^{-p} \left (d \left (a+b \log \left (c x^n\right )\right )\right )^p \int x^{-b d n-2} \left (a+b \log \left (c x^n\right )\right )^{p-1}dx-\frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 2747

\(\displaystyle -\frac {b e^{-a d} \left (c x^n\right )^{\frac {1}{n}} \left (a+b \log \left (c x^n\right )\right )^{-p} \left (d \left (a+b \log \left (c x^n\right )\right )\right )^p \int \left (c x^n\right )^{-\frac {b d n+1}{n}} \left (a+b \log \left (c x^n\right )\right )^{p-1}d\log \left (c x^n\right )}{x}-\frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

\(\Big \downarrow \) 2612

\(\displaystyle \frac {\left (c x^n\right )^{\frac {1}{n}} e^{a \left (\frac {1}{b n}+d\right )-a d} \left (d \left (a+b \log \left (c x^n\right )\right )\right )^p \left (\frac {(b d n+1) \left (a+b \log \left (c x^n\right )\right )}{b n}\right )^{-p} \Gamma \left (p,\frac {(b d n+1) \left (a+b \log \left (c x^n\right )\right )}{b n}\right )}{x}-\frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x}\)

Input:

Int[Gamma[p, d*(a + b*Log[c*x^n])]/x^2,x]
 

Output:

-(Gamma[p, d*(a + b*Log[c*x^n])]/x) + (E^(-(a*d) + a*(d + 1/(b*n)))*(c*x^n 
)^n^(-1)*Gamma[p, ((1 + b*d*n)*(a + b*Log[c*x^n]))/(b*n)]*(d*(a + b*Log[c* 
x^n]))^p)/(x*(((1 + b*d*n)*(a + b*Log[c*x^n]))/(b*n))^p)
 

Defintions of rubi rules used

rule 2612
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] 
:> Simp[(-F^(g*(e - c*(f/d))))*((c + d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d) 
)^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m + 1, 
 ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] && 
!IntegerQ[m]
 

rule 2747
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[(d*x)^(m + 1)/(d*n*(c*x^n)^((m + 1)/n))   Subst[Int[E^(((m + 1)/n 
)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}, x]
 

rule 7132
Int[Gamma[p_, ((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_ 
.), x_Symbol] :> Simp[(e*x)^(m + 1)*(Gamma[p, d*(a + b*Log[c*x^n])]/(e*(m + 
 1))), x] + Simp[(b*d*n*((e*x)^(b*d*n)/((m + 1)*(c*x^n)^(b*d))))/E^(a*d) 
Int[(e*x)^(m - b*d*n)*(d*(a + b*Log[c*x^n]))^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, m, n, p}, x] && NeQ[m, -1]
 

rule 7271
Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*v^m)^ 
FracPart[p]/v^(m*FracPart[p]))   Int[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, 
x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&  !(Eq 
Q[v, x] && EqQ[m, 1])
 
Maple [F]

\[\int \frac {\Gamma \left (p , d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )}{x^{2}}d x\]

Input:

int(GAMMA(p,d*(a+b*ln(c*x^n)))/x^2,x)
 

Output:

int(GAMMA(p,d*(a+b*ln(c*x^n)))/x^2,x)
 

Fricas [F]

\[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int { \frac {\Gamma \left (p, {\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{2}} \,d x } \] Input:

integrate(gamma(p,d*(a+b*log(c*x^n)))/x^2,x, algorithm="fricas")
 

Output:

integral(gamma(p, b*d*log(c*x^n) + a*d)/x^2, x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\text {Timed out} \] Input:

integrate(uppergamma(p,d*(a+b*ln(c*x**n)))/x**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int { \frac {\Gamma \left (p, {\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{2}} \,d x } \] Input:

integrate(gamma(p,d*(a+b*log(c*x^n)))/x^2,x, algorithm="maxima")
 

Output:

integrate(gamma(p, (b*log(c*x^n) + a)*d)/x^2, x)
 

Giac [F]

\[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int { \frac {\Gamma \left (p, {\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{2}} \,d x } \] Input:

integrate(gamma(p,d*(a+b*log(c*x^n)))/x^2,x, algorithm="giac")
 

Output:

integrate(gamma(p, (b*log(c*x^n) + a)*d)/x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int \frac {\Gamma \left (p,d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right )}{x^2} \,d x \] Input:

int(igamma(p, d*(a + b*log(c*x^n)))/x^2,x)
 

Output:

int(igamma(p, d*(a + b*log(c*x^n)))/x^2, x)
 

Reduce [F]

\[ \int \frac {\Gamma \left (p,d \left (a+b \log \left (c x^n\right )\right )\right )}{x^2} \, dx=\int \frac {\gamma \left (p , \mathrm {log}\left (x^{n} c \right ) b d +a d \right )}{x^{2}}d x \] Input:

int(GAMMA(p,d*(a+b*log(c*x^n)))/x^2,x)
 

Output:

int(gamma(p,log(x**n*c)*b*d + a*d)/x**2,x)