\(\int x^3 \sqrt {W(\frac {a}{x})} \, dx\) [207]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 94 \[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=-\frac {256}{105} a^4 \sqrt {\pi } \text {erf}\left (2 \sqrt {W\left (\frac {a}{x}\right )}\right )+\frac {2}{7} x^4 \sqrt {W\left (\frac {a}{x}\right )}-\frac {2}{35} x^4 W\left (\frac {a}{x}\right )^{3/2}+\frac {16}{105} x^4 W\left (\frac {a}{x}\right )^{5/2}-\frac {128}{105} x^4 W\left (\frac {a}{x}\right )^{7/2} \] Output:

-256/105*a^4*Pi^(1/2)*erf(2*LambertW(a/x)^(1/2))+2/7*x^4*LambertW(a/x)^(1/ 
2)-2/35*x^4*LambertW(a/x)^(3/2)+16/105*x^4*LambertW(a/x)^(5/2)-128/105*x^4 
*LambertW(a/x)^(7/2)
 

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.94 \[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=-\frac {2}{105} \left (128 a^4 \sqrt {\pi } \text {erf}\left (2 \sqrt {W\left (\frac {a}{x}\right )}\right )-15 x^4 \sqrt {W\left (\frac {a}{x}\right )}+3 x^4 W\left (\frac {a}{x}\right )^{3/2}-8 x^4 W\left (\frac {a}{x}\right )^{5/2}+64 x^4 W\left (\frac {a}{x}\right )^{7/2}\right ) \] Input:

Integrate[x^3*Sqrt[ProductLog[a/x]],x]
 

Output:

(-2*(128*a^4*Sqrt[Pi]*Erf[2*Sqrt[ProductLog[a/x]]] - 15*x^4*Sqrt[ProductLo 
g[a/x]] + 3*x^4*ProductLog[a/x]^(3/2) - 8*x^4*ProductLog[a/x]^(5/2) + 64*x 
^4*ProductLog[a/x]^(7/2)))/105
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.12, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {7173, 7206, 7206, 7206, 7203}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx\)

\(\Big \downarrow \) 7173

\(\displaystyle \frac {2}{7} x^4 \sqrt {W\left (\frac {a}{x}\right )}-\frac {1}{7} \int \frac {x^3 W\left (\frac {a}{x}\right )^{3/2}}{W\left (\frac {a}{x}\right )+1}dx\)

\(\Big \downarrow \) 7206

\(\displaystyle \frac {1}{7} \left (\frac {8}{5} \int \frac {x^3 W\left (\frac {a}{x}\right )^{5/2}}{W\left (\frac {a}{x}\right )+1}dx-\frac {2}{5} x^4 W\left (\frac {a}{x}\right )^{3/2}\right )+\frac {2}{7} x^4 \sqrt {W\left (\frac {a}{x}\right )}\)

\(\Big \downarrow \) 7206

\(\displaystyle \frac {1}{7} \left (\frac {8}{5} \left (\frac {2}{3} x^4 W\left (\frac {a}{x}\right )^{5/2}-\frac {8}{3} \int \frac {x^3 W\left (\frac {a}{x}\right )^{7/2}}{W\left (\frac {a}{x}\right )+1}dx\right )-\frac {2}{5} x^4 W\left (\frac {a}{x}\right )^{3/2}\right )+\frac {2}{7} x^4 \sqrt {W\left (\frac {a}{x}\right )}\)

\(\Big \downarrow \) 7206

\(\displaystyle \frac {1}{7} \left (\frac {8}{5} \left (\frac {2}{3} x^4 W\left (\frac {a}{x}\right )^{5/2}-\frac {8}{3} \left (2 x^4 W\left (\frac {a}{x}\right )^{7/2}-8 \int \frac {x^3 W\left (\frac {a}{x}\right )^{9/2}}{W\left (\frac {a}{x}\right )+1}dx\right )\right )-\frac {2}{5} x^4 W\left (\frac {a}{x}\right )^{3/2}\right )+\frac {2}{7} x^4 \sqrt {W\left (\frac {a}{x}\right )}\)

\(\Big \downarrow \) 7203

\(\displaystyle \frac {1}{7} \left (\frac {8}{5} \left (\frac {2}{3} x^4 W\left (\frac {a}{x}\right )^{5/2}-\frac {8}{3} \left (4 \sqrt {\pi } a^4 \text {erf}\left (2 \sqrt {W\left (\frac {a}{x}\right )}\right )+2 x^4 W\left (\frac {a}{x}\right )^{7/2}\right )\right )-\frac {2}{5} x^4 W\left (\frac {a}{x}\right )^{3/2}\right )+\frac {2}{7} x^4 \sqrt {W\left (\frac {a}{x}\right )}\)

Input:

Int[x^3*Sqrt[ProductLog[a/x]],x]
 

Output:

(2*x^4*Sqrt[ProductLog[a/x]])/7 + ((-2*x^4*ProductLog[a/x]^(3/2))/5 + (8*( 
(2*x^4*ProductLog[a/x]^(5/2))/3 - (8*(4*a^4*Sqrt[Pi]*Erf[2*Sqrt[ProductLog 
[a/x]]] + 2*x^4*ProductLog[a/x]^(7/2)))/3))/5)/7
 

Defintions of rubi rules used

rule 7173
Int[(x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.), x_Symbol] :> Sim 
p[x^(m + 1)*((c*ProductLog[a*x^n])^p/(m + n*p + 1)), x] + Simp[n*(p/(c*(m + 
 n*p + 1)))   Int[x^m*((c*ProductLog[a*x^n])^(p + 1)/(1 + ProductLog[a*x^n] 
)), x], x] /; FreeQ[{a, c, m, n, p}, x] && (EqQ[m, -1] || (IntegerQ[p - 1/2 
] && ILtQ[Simplify[p + (m + 1)/n] - 1/2, 0]) || ( !IntegerQ[p - 1/2] && ILt 
Q[Simplify[p + (m + 1)/n], 0]))
 

rule 7203
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_))/((d_) + (d_.)*Pr 
oductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[a^(p - 1/2)*c^(p - 1/2)*Rt[P 
i*(c/(p - 1/2)), 2]*(Erf[Sqrt[c*ProductLog[a*x^n]]/Rt[c/(p - 1/2), 2]]/(d*n 
)), x] /; FreeQ[{a, c, d, m, n}, x] && NeQ[m, -1] && IntegerQ[p - 1/2] && E 
qQ[m + n*(p - 1/2), -1] && PosQ[c/(p - 1/2)]
 

rule 7206
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.))/((d_) + (d_.)*P 
roductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[x^(m + 1)*((c*ProductLog[a* 
x^n])^p/(d*(m + n*p + 1))), x] - Simp[(m + 1)/(c*(m + n*p + 1))   Int[x^m*( 
(c*ProductLog[a*x^n])^(p + 1)/(d + d*ProductLog[a*x^n])), x], x] /; FreeQ[{ 
a, c, d, m, n, p}, x] && NeQ[m, -1] && LtQ[Simplify[p + (m + 1)/n], 0]
 
Maple [F]

\[\int x^{3} \sqrt {\operatorname {LambertW}\left (\frac {a}{x}\right )}d x\]

Input:

int(x^3*LambertW(a/x)^(1/2),x)
 

Output:

int(x^3*LambertW(a/x)^(1/2),x)
 

Fricas [F]

\[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=\int { x^{3} \sqrt {\operatorname {W}({\frac {a}{x}})} \,d x } \] Input:

integrate(x^3*lambert_w(a/x)^(1/2),x, algorithm="fricas")
 

Output:

integral(x^3*sqrt(lambert_w(a/x)), x)
 

Sympy [F]

\[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=\int x^{3} \sqrt {W\left (\frac {a}{x}\right )}\, dx \] Input:

integrate(x**3*LambertW(a/x)**(1/2),x)
 

Output:

Integral(x**3*sqrt(LambertW(a/x)), x)
 

Maxima [F]

\[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=\int { x^{3} \sqrt {\operatorname {W}({\frac {a}{x}})} \,d x } \] Input:

integrate(x^3*lambert_w(a/x)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^3*sqrt(lambert_w(a/x)), x)
 

Giac [F]

\[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=\int { x^{3} \sqrt {\operatorname {W}({\frac {a}{x}})} \,d x } \] Input:

integrate(x^3*lambert_w(a/x)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^3*sqrt(lambert_w(a/x)), x)
 

Mupad [F(-1)]

Timed out. \[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=\int x^3\,\sqrt {\mathrm {LambertW}\left (\frac {a}{x}\right )} \,d x \] Input:

int(x^3*LambertW(a/x)^(1/2),x)
 

Output:

int(x^3*LambertW(a/x)^(1/2), x)
 

Reduce [F]

\[ \int x^3 \sqrt {W\left (\frac {a}{x}\right )} \, dx=\frac {\sqrt {\textit {lambert\_w} \left (\frac {a}{x}\right )}\, x^{4}}{4}+\frac {\left (\int \frac {\sqrt {\textit {lambert\_w} \left (\frac {a}{x}\right )}\, x^{2}}{e^{\textit {lambert\_w} \left (\frac {a}{x}\right )} \textit {lambert\_w} \left (\frac {a}{x}\right )^{2}+e^{\textit {lambert\_w} \left (\frac {a}{x}\right )} \textit {lambert\_w} \left (\frac {a}{x}\right )}d x \right ) a}{8} \] Input:

int(x^3*Lambert_W(a/x)^(1/2),x)
 

Output:

(2*sqrt(lambert_w(a/x))*x**4 + int((sqrt(lambert_w(a/x))*x**2)/(e**lambert 
_w(a/x)*lambert_w(a/x)**2 + e**lambert_w(a/x)*lambert_w(a/x)),x)*a)/8