1.508 problem 509

Internal problem ID [8089]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 509.
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [[_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

Solve \begin {gather*} \boxed {9 y^{4} \left (x^{2}-1\right ) \left (y^{\prime }\right )^{2}-6 x y^{5} y^{\prime }-4 x^{2}=0} \end {gather*}

Solution by Maple

Time used: 0.141 (sec). Leaf size: 245

dsolve(9*y(x)^4*(x^2-1)*diff(y(x),x)^2-6*x*y(x)^5*diff(y(x),x)-4*x^2=0,y(x), singsol=all)
 

\begin{align*} y \relax (x ) = \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = -\left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-4 x^{2}+4\right )^{\frac {1}{6}} \\ y \relax (x ) = \frac {\left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{2 c_{1}} \\ y \relax (x ) = -\frac {\left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}}-\frac {i \sqrt {3}\, \left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}} \\ y \relax (x ) = -\frac {\left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}}+\frac {i \sqrt {3}\, \left (\left (4 x^{2}-16 c_{1}^{2}-4\right ) c_{1}^{2}\right )^{\frac {1}{3}}}{4 c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.403 (sec). Leaf size: 199

DSolve[-4*x^2 - 6*x*y[x]^5*y'[x] + 9*(-1 + x^2)*y[x]^4*y'[x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{-4 x^2+4+c_1{}^2}}{\sqrt [3]{c_1}} \\ y(x)\to -1 \\ y(x)\to 0 \\ y(x)\to \sqrt [3]{-\frac {1}{2}} \\ y(x)\to \text {Indeterminate} \\ y(x)\to -\sqrt [3]{-2} \sqrt [6]{1-x^2} \\ y(x)\to \sqrt [3]{-2} \sqrt [6]{1-x^2} \\ y(x)\to -\sqrt [3]{2} \sqrt [6]{1-x^2} \\ y(x)\to \sqrt [3]{2} \sqrt [6]{1-x^2} \\ y(x)\to -(-1)^{2/3} \sqrt [3]{2} \sqrt [6]{1-x^2} \\ y(x)\to (-1)^{2/3} \sqrt [3]{2} \sqrt [6]{1-x^2} \\ \end{align*}