2.14 problem 590

Internal problem ID [8170]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 590.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_symmetry_[F(x),G(y)]]]

Solve \begin {gather*} \boxed {y^{\prime }-\frac {x}{-y+F \left (y^{2}+x^{2}\right )}=0} \end {gather*}

Solution by Maple

Time used: 0.094 (sec). Leaf size: 58

dsolve(diff(y(x),x) = x/(-y(x)+F(y(x)^2+x^2)),y(x), singsol=all)
 

\begin{align*} y \relax (x ) = \sqrt {-x^{2}+\RootOf \left (F \left (\textit {\_Z} \right )\right )} \\ y \relax (x ) = -\sqrt {-x^{2}+\RootOf \left (F \left (\textit {\_Z} \right )\right )} \\ -y \relax (x )+\frac {\left (\int _{}^{x^{2}+y \relax (x )^{2}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} \right )}{2}-c_{1} = 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.199 (sec). Leaf size: 94

DSolve[y'[x] == x/(F[x^2 + y[x]^2] - y[x]),y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^{y(x)}\left (-\frac {K[2]}{F\left (x^2+K[2]^2\right )}-\int _1^x\frac {2 K[1] K[2] F'\left (K[1]^2+K[2]^2\right )}{F\left (K[1]^2+K[2]^2\right )^2}dK[1]+1\right )dK[2]+\int _1^x-\frac {K[1]}{F\left (K[1]^2+y(x)^2\right )}dK[1]=c_1,y(x)\right ] \]