2.335 problem 911

Internal problem ID [8491]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, Additional non-linear first order
Problem number: 911.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_symmetry_[F(x),G(x)*y+H(x)]]]

Solve \begin {gather*} \boxed {y^{\prime }+\left (-\frac {\ln \relax (y)}{x}+\frac {\cos \relax (x ) \ln \relax (y)}{\sin \relax (x )}-\textit {\_F1} \relax (x )\right ) y=0} \end {gather*}

Solution by Maple

Time used: 0.391 (sec). Leaf size: 30

dsolve(diff(y(x),x) = -(-1/x*ln(y(x))+1/sin(x)*cos(x)*ln(y(x))-_F1(x))*y(x),y(x), singsol=all)
 

\[ y \relax (x ) = {\mathrm e}^{\frac {x c_{1}}{\sin \relax (x )}} {\mathrm e}^{\frac {x \left (\int \frac {\textit {\_F1} \relax (x ) \sin \relax (x )}{x}d x \right )}{\sin \relax (x )}} \]

Solution by Mathematica

Time used: 0.694 (sec). Leaf size: 105

DSolve[y'[x] == (F1[x] + Log[y[x]]/x - Cot[x]*Log[y[x]])*y[x],y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^x\left (\frac {2 \log (y(x)) \sin (K[1])}{K[1]^2}+\frac {2 (\text {F1}(K[1]) \sin (K[1])-\cos (K[1]) \log (y(x)))}{K[1]}\right )dK[1]+\int _1^{y(x)}\left (-\frac {2 \sin (x)}{x K[2]}-\int _1^x\left (\frac {2 \sin (K[1])}{K[1]^2 K[2]}-\frac {2 \cos (K[1])}{K[1] K[2]}\right )dK[1]\right )dK[2]=c_1,y(x)\right ] \]