37.10 problem 1126

Internal problem ID [3816]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 37
Problem number: 1126.
ODE order: 1.
ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, class A], _dAlembert]

Solve \begin {gather*} \boxed {a x \sqrt {\left (y^{\prime }\right )^{2}+1}+y^{\prime } x -y=0} \end {gather*}

Solution by Maple

Time used: 0.282 (sec). Leaf size: 223

dsolve(a*x*sqrt(1+diff(y(x),x)^2)+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 

\begin{align*} x -\frac {{\mathrm e}^{\frac {\arcsinh \left (\frac {\sqrt {-a^{2} x^{2}+x^{2}+y \relax (x )^{2}}\, a +y \relax (x )}{x \left (a^{2}-1\right )}\right )}{a}} c_{1}}{\sqrt {\frac {-a^{2} x^{2}+a^{2} y \relax (x )^{2}+2 \sqrt {-a^{2} x^{2}+x^{2}+y \relax (x )^{2}}\, a y \relax (x )+x^{2}+y \relax (x )^{2}}{\left (a^{2}-1\right )^{2} x^{2}}}} = 0 \\ x -\frac {{\mathrm e}^{-\frac {\arcsinh \left (\frac {\sqrt {-a^{2} x^{2}+x^{2}+y \relax (x )^{2}}\, a -y \relax (x )}{x \left (a^{2}-1\right )}\right )}{a}} c_{1}}{\sqrt {-\frac {a^{2} x^{2}-a^{2} y \relax (x )^{2}+2 \sqrt {-a^{2} x^{2}+x^{2}+y \relax (x )^{2}}\, a y \relax (x )-x^{2}-y \relax (x )^{2}}{\left (a^{2}-1\right )^{2} x^{2}}}} = 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.83 (sec). Leaf size: 283

DSolve[a x Sqrt[1+(y'[x])^2]+x y'[x] -y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} \text {Solve}\left [\frac {a \left (\log \left (\sqrt {a^2-\frac {y(x)^2}{x^2}-1}-a-\frac {i y(x)}{x}+1\right )+\log \left (\sqrt {a^2-\frac {y(x)^2}{x^2}-1}+a-\frac {i y(x)}{x}-1\right )\right )-(a+1) \log \left ((a-1) \left (\sqrt {a^2-\frac {y(x)^2}{x^2}-1}-\frac {i y(x)}{x}\right )\right )}{a^2-1}=\frac {a \log \left (x-a^2 x\right )}{1-a^2}+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {a \left (\log \left (\sqrt {a^2-\frac {y(x)^2}{x^2}-1}-a-\frac {i y(x)}{x}-1\right )+\log \left (\sqrt {a^2-\frac {y(x)^2}{x^2}-1}+a-\frac {i y(x)}{x}+1\right )\right )-(a-1) \log \left ((a+1) \left (\sqrt {a^2-\frac {y(x)^2}{x^2}-1}-\frac {i y(x)}{x}\right )\right )}{a^2-1}=\frac {a \log \left (x-a^2 x\right )}{1-a^2}+c_1,y(x)\right ] \\ \end{align*}